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X2000 Bus Fault Tolerance 1. Executive Summarv

1. Executive Summary

In early June of 1998 Glenn Reeves asked me to analyze the fault tolerance of the proposed bus structure
for X2000 avionics. This report reflects my attendance at the 11-Jun-1998 X2000 avionics architecture
review, as well as interviews with Savio Chau, Bob Barry, Bob Rasmussen, Don Hunter, and Carl Steiner.

| have studied more than sixteen project documents, and have surveyed the related literature. Table 1 syn-
opsizes my observations, conclusions, and recommendations, and is based on the following priorities:

a. Whatdo we want to build? That is, to what extentraguirementdor bus fault tolerance

i) clear?
i)  complete?
iif)  self-consistent?

b. Howwill we build it? That is, to what extent is thechitecturefor bus fault tolerance

i) clear?
i) complete?
iii) self-consistent?

c. To what extent does tlehatmatch thehow? Are requirements consistent with architecture?
d. Does the architecture make best use of fault tolerant technology?

Somewhat surprisingly, citerion (d) seems to govern most people’s thinking, with relatively less emphasis
on the operational utility of (a), (b), and (c). This is of concern since it is at best difficult to assess require-
ments or architectures that are neither well-specified nor complete. On a positive note, the requirements
and architectural specifications that are in place can be augmented to provide operational utility.

Observations and conclusions Overall recommendations Details in

Tendency to overemphasize technology, unc

emphasize requirements and architecture. Broaden and deepen existing requirements

Portions of requirements and architect{r@rchitectural specifications with clear, comple  Taples
unclear, incomplete, or inconsistent. consistent operational descriptions. 2,3,4,5

(Estimate 180 hours to complete).

Viewgraphs are insufficient for capturing
requirements and specifications.

Diagnosis and configuration with software a| Employ “underware” for mutual test, diagnos
back-door12C bus does not achieve physiq and distributed configuration of 1394 bus{ Tables 4, 5
level fault tolerance; cost and risk greater tf Omit 50% of 1394 wires. Eliminate back do| Section 3
with self-configuring 1394 bus alone. 1%C, but keep essentials of high level diagnosi

Table 1: General observations, conclusions, and recommendations. X2000 will benefit more from clear,
complete, and consistent requirements and specifications than from improvements in bus fault tolerance.

There is a wide variation in the clarity, completeness, and consistency of X2000 requirements and architec-
tural specifications for bus fault tolerance. On the plus side, almost all of the requirements that are clear are
also self-consistent. Five of the sixteen project documents that | examined contain explanatory narratives;
three of these five are project documents, and two are viewgraph presentations. The remaining documents,
all viewgraph presentations, lack explanatory narratives. Many of the gaps in requirements and architec-
tural specifications reflect a tendency to use viewgraphs in place of explanatory narratives. | frequently
found that different people interpreted the same viewgraphs quite differently. For this reason | conclude
that viewgraphs areot adequate for capturing and communicating requirements and specifications. In
part, “design-by-viewgraph” appears to be a reaction against the perceived overspecific@tssiiif

Some people justified design-by-viewgraph by pointing to the succédarsfPathfinder wherein cap-

ture of requirements and architecture was minimized. Another justification, spoken by almost everyone |
interviewed, is based on the perception that people have more work to do, in less time, than ever before.

L. E. LaForge, revision 18-Oct-1999 2 Jet Propulsion Laboratory document JPL D-16485



X2000 Bus Fault Tolerance 1. Executive Summarv

As to criterion (c), the architecture for bus fault tolerance, such as it can be gleaned, is not entirely consis-
tent with project requirements for bus fault tolerance. The good news is that both requirements and archi-
tectural specifications for fault tolerant bus interconnection can, in a straightforward manner, be rendered
clear, complete, self-consistent, and consistent with each other. Assuming cooperation on the part of hard-
ware and software groups, | estimate that it will take about 180 hours of work to accomplish this, with
about one-third of the work devoted to requirements.

Technical aspects of this report focus on criterion (d). To diagnose and configure in the presence of faults
in computational nodes of the bus, the current apprq@dtaflan et al 11-Jun-1998pPption D) combines

a software lock and key with a “back-doofCl bus. Such an add-on approach is at odds with X2000 writ-

ten policies for built-in fault tolerance. My conclusion is that the current approach exposes the physical
interconnection to a level of risk that is not commensurate with X2000 project goals. The good news is that
the existing high-level approach can be modified to achieve robustness across the four layers of the 1394

protocol! withouta (redundant) back-doof@ bus [Charlan et al 11-Jun-1998Pption C). Reallocating
resources to the design and test of such “underware” would give more fault tolerance per dollar, and at the

same time save at least tWi€Iwires per computational node. In keeping with goals of X2000 engineers,
this underware requires no modifications to the 1394 hardware.

Refer to Figure 1. Since the switching functions of the 1394 are built into the avionics nodes themselves, a
particular concern is the tolerance of the bus to nodes whose switching functions fail. Such failures tend to
partition the bus. In this regathle point-to-point connectivity as presented at the 11-Jun-1998 core avion-

ics design review is single fault tolerasven if a back-doo”C bus scheme works perfectly. At a cost of

six 1394 ports (36 wires) per node - we are substantially overpfyisgngle fault toleranc@This report
recommenddalving the present 1394 bus wirecoyfom 36 down to 18 wires per nodet the same
time doubling the tolerance to partitioning faults (up from one to t®opfiguration in the presence of
partitioning faults can be modeled as a bivariate optimization problem in extremal graph theory:

What (f+1)-connected graphs with fewest edges minimize the maximum radius or diame-
ter of trees spanning the quorums induced by deleting Lipftthen original vertices?

Heren is the number of nodes ahid the number of faults we want to tolerate, in the worst case. Minimiz-

ing the maximum number of hops between nodes in the tree configured is the same as minimizing the
diameter, and essentially the same as minimizing the radius. As an absolute limit, the 1394 specification
allows at most 16 hops between nofeE394 1995]

The remainder of this report is organized as follows. Section 2 synopsizes findings and recommendations
with respect to project processes and procedures. Section 3 comprises the technical exposition.
Sections 3.1 through 3.8 furnish lower and upper bounds on the radius and diameter of quorums for archi-
tectures based on stars, cycles, cliques, K-cubes, and C-cubes. | show how, with the exception of C-cubes,
these structures are absolutely or asymptotically optimum. Section 3.9 illustrates how to formulate and
analyze parallel algorithms for distributed diagnosis and configuration. In the presence of both partitioning
faults and babbling nodes, these algorithms minimize the radius or diameter of a 138ithous,the

need for a back-dooPC bus Section 3.10 shows how to apply the theorems, formulae, and algorithms of
Sections 3.1 through 3.9 to architectures capable of tolerating one, two, or three faults. To help the
designer | have supplemented this report with an Excel workbook. For given number oh rodefault
tolerancef, GRAFT (GRaph _Architecture_Rult Tolerance calculator) recommends an architecture with
minimum number of point-to-point connections. GRAFT also reports the radius and diameter of quorums
induced, as a function of the actual number of faults. Sections 3.8 and 3.10 describe how to use GRAFT.

Despite the technical emphasis of the bulk of this report, X2000 will benefit more from clear, complete,
and consistent requirements and specifications than from improvements in bus fault tolerance.

1. The 1394 bus prescribes four layers of protocol: physical link, transaction, and bus mandga3@ht1095]
Chapter 3). In effect, the MDS application will add at least one layer to this.
2. At six wires per port: twisted pairs A and B, plus power and gr{rRtgb4 1995]

L. E. LaForge, revision 18-Oct-1999 3 Jet Propulsion Laboratory document JPL D-16485
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2. Findings and Recommendations

In the spirit ofopen communicationand independent reviewWoerner, Spear, Parker 7-Aug-1998]
2.5.3;[Kemski 14-Jul-1998]3.3.1), Tables 2 through 4 detail my findings with respect to evaluation crite-
ria (a) through (d) as listed in Section 1. Table 5 lists my specific recommendations.

I. Requirements

Il. References

[ll. Points where requirements are unclear,
incomplete, or inconsistent

Significant risk list (SRL).
“ ...Identified risks and assoc

nificant Risk List (SRL) ...”

Project Implementa-

SRL does not appear to exist, despite risks

(in

part as described in this report). For example, it

sion flyings with a single flight computer.

Single point failure.
“... The FDP design shall tol-
erate single faults. The defini
tion of a fault shall include
hardware failures (e.g.,

sequence errors, and bad co
mands). No single fault shall
result in the loss of a missior

critical function ...”

Project Implementa-
tion Plan, 3.8.3.1
[Woerner, Spear, Parke

[Guiar 23-Jul-1998]

Unclear what is meant by a “point”. Is this

Fault monitoring.
“... The FDP design shall pro
vide a method for detecting
system failure modes. The pr
ferred method for the detecH
tion shall be supplied within
the subsystem component
through the use of built in seli
testing ...”

Project Implementa-
tion Plan, 3.8.3.4

[Woerner, Spear, Parke

7-Aug-1998]

ated decisions to either accey tion Plan, 2.9 is apparently yet undocumented that a flight
mitigate, or eliminate those | [Woerner, Spear, Parke| computer isequiredto execute the MDS soft-
risks will be recorded in a Sig 7-Aug-1998] ware; this represents a significant risk to mis-

dexg:reesf:mjjr:s?gtgrs)sailgglgo 7-Aug-1998] some location within a “fault containment
Event Upset, software bugs| Level 3 Requirements, region”? (See also row B of Table 3).
3-2141

Proposed software lock and key mechanism is

not within the 1394 physical layer subsyste

m;

proposed mechanism does not detect low level

bus failure modes(g, switches stuck closed ¢

r

faulty bus circuits). This report recommends

mutualtest and diagnosjtaForge and Korver
1997] See also Sections 3, 3.9.

Reliability .
“... The following reliability

Reliability/cost now highest
priorities for X2000.

Mission Assurance

[Guiar 11-Jun-1998]

Reference$IPL D-5703 23-Jul-1998]s con-
taining methods for analysis; it does not.

Lack of FMECA's suggests
reliability is not a highest priority

Success-critical
single failure point (SFP)
“All system SFP’s shall be

identified ...”

Mission Assurance
Plan, 3.3.2
[Kemski 14-Jul-1998]

Apparently no list of SFP’s exist. However, th
report serves to begin such a list

FMECA’s.
“... FMECAs shall be per-
formed and documented ...”

Mission Assurance
Plan, 3.3.3.1
[Kemski 14-Jul-1998]

No FMECA published for avionics bus fau
tolerance; this is at odds with 3.3.1: “... A
analyses shall be maintained in a current g
and reflect the currently approved design ...”

L. E. LaForge, revision 18-Oct-1999
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analyses shall utilize the met S, S More relevant i$JPL 4-11 1-Apr-1984]
odology stated in JPL D-5701 [Kemski 14-Jul-1998] | - ;1001 \what the PEM/MAM approved meth-
or PEM/MAM approved Design odologies are, or even if they exist.
methodologies... Approach/Priorities

S

It
Il
tate

Table 2: Findings with respect to Project Implementation Plan and Mission Assurance Plan requirements.
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With respect to Row A of Table 2, having a significant risk list (SRL) is an excellentl iclammend
that an SRL be composed and, even if empty, placed in the online project lit@fist should be readily
locatable using the online library search engine and the keywords “SRL” or “Significant Risk List".

Row B of Table 2 and row B of Table 3 underscore a very important point. A clear analysis of fault toler-
ance requires a clearly defined fault model. Most people | interviewed claimed to understand “single fault”
and “point of failure”. When pressed, however, most could not articulate the meaning of these phrases in
the context of X2000; those who did give definitions spoke in terms of “fault containment regji@ts”.
ommend that the respective definitions be unambiguously fleshed out, if necessary, by an exhaustive list of
“faults, “points of failure”, and “fault containment regions'First drafts of these lists are given by column

Il of row B of Table 3, and by row C of Table 3.

| Requi [ll. Points where requirements are
. Requirements Il. References . " :
unclear, incomplete, or inconsistent
Fault protection built in, not on. Proposed software lock and key mechanism
“...X2000 has a major goal of build is directly at variance with this policy. Cur-
ing fault protection (a.k.a. redun- Level 3 rent design is on top of, not within, the 1394
dancy management, fault toleranc Requirements physical layer subsystem; proposed mecha-
A. goal oriented commanding) INTO 3.2643. 3-2139 nism does not detect low level bus failure
the spacecraft via its subsystem a [Guiar 23—’Jul—1998] modes €.g.,switches stuck closed or faulty
subsystem components, rather tha bus circuits). This report recommends incor-
adding FP on top of the normal porating fault tolerance vianderware See
spacecraft functions. ...” also Sections 3, 3.9.
Unclear what is meant by a “fault contain-
ment region” and “spacecraft fault set”. Dig-
Fault containment regions. gram is unaccompanied by narrative
“... All subsystems and block redun explanation. According to Savio Chau, each
dant units within subsystems shall & Level 3 slice containing a microcontroller and ity
designed to be fault containment Requirements | |ocal memory is a fault containment region;
regions. Fault containment regiony 3-2147, 13-12, 13-13 a5ch flight computer (3 slices) is a fault can-
B. | shall be designed such that any fa( [Guiar 23-Jul-1998] |  tainment region; each pair consisting of a
from the spacecraft fault set occur  Fayit containment | Peripheral slice plus its respective controller
ring in a fault containment region regions slice is a fault containment region; withiry
shall not propagate faults or undete|  [Gujar Jun-1998] | any PASM module inside a PCU slice, each
able errors into other fault contain switch is a fault containment region; the
ment regions. ..." assemblage of alternative “global memory”
(volatile and nonvolatile, all slices together)
is a fault containment region.
) Faults tolerated, | Proposed software lock and key mechanism
.. All permanent stuck-at faults ... Level 3 is not tolerant to switches stuck closed gr
C. “_.. Any bridging fault (such as a Requirements faulty bus circuits. Unclear what is meant by
short) occurring within, but not 3-2149, 3-2151 | a bridging fault occurring “between an ele-
between an element of a redundal [Guiar 23-Jul-1998] | ment of a redundant system”. Is this relatgd
system ...” to fault containment regions?
Distributed fault tol Level 3
“... Use low level, behavioral/reflex 3-2?56, 3-2157, nlj)rsoiﬁosa(\ar? dbczcrﬁ}dgﬁam; ?Rta nrlzgggroil?ﬁ’é
D [ FEUE CEIEGEN EN [EEereE 13-16, 13-17 bus ?scentralize?:i The?a rc)J/ach recom-
' where feasible... Use centralized| [Guiar 23-Jul-1998] mended by thi APP i |
L . y this report is low-level behay
(RLIASe) il e &g ioral/reflexive fault detection
response where required ...” | [Barry 22-Jan-1998] :
[Barry 26-Feb-1998]

Table 3: Findings with respect to Level 11l and fault protection policy requirements.

L. E. LaForge, revision 18-Oct-1999
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X2000 Bus Fault Tolerance 2. Findings and Recommendations

As excerpted in row C of Table 2, the fault monitoring policy prescribed by the Project Implementation
Plan reiterates a longstanding maxim for testing: systems are themselves best suited to detect faults in sys-
tems of like kind. “Like kind” includes details of interfaces, signal formats, and timing. The proposed lock
and key mechanism is well-suited for detecting failures in low-level software. This mechanism is much
less well suited to detecting failures at the transistor or gate level, or at the level of Goal Achieving Mod-
ules (GAMS). To be proper, we should desifysical layer mutual test and diagnosis among bus nodes.
However, in deference of the desire of project engineers not to modify bus controller hardware, | propose a
version of mutual test and diagnosis that spans all layers of the 1394. An advantage of such high-level
diagnosis is that the overall probability of fault detection is increased. A disadvantage is that the probabil-
ity of fine-grained fault isolation is decreased. Mutual test and diagnosis is a superset of built in self-test,
and dovetails well with point-to-point interconnections such as that used to support the redundancy of the
1394 bugLaForge and Korver 1997]

I1l. Points where specifications are unclear,
Il. References incomplete, inconsistent, or do not reflect best
use of fault tolerant technology.

I. Architectural
specifications

Begs the question by relying on faulty nodes| to
dissociate themselves frorfQ bus. Nodes with
SDA or SCL switch stuck closed (either due|to

Fail silent.
Software on each node
sends out key olfC bus;

opens connection to bus if Symmetric hardware or software) will not dissociate them-
A. kg not retrieved. If kev is Architecture selves; fault propagates to all other nodes. Gon-
s):ant and retrie\)ed chn [Rasmussen 11-Jun-199¢ travenes policies for significant risk, single fault
lower lavers on node are tolerance, stuck-at faults, propagation of faults
Iike?/ to work (cf. rows A and B of Table 2, rows B and C pof
y ' Table 3,[Paret and Fenger 199Hig 3.1)
Unclear how pass gate is controlled. Extra pass
B FET [natviee Male gates increase the chances that nodes will be dis-
d 12C. 1394 b ) sociated from the bus. Failure of FET's in serjes
an ’ us. Bus Tiger Team within any nodei(e., within some fault contain
Prevent power shorts by / i Ay
B adding pass transistor [Chau 11-Jun-1998] n;ent region) propagates fau_lt across multid op
' between around and@ [Charlan et al 11-Jun- I“C bus to all other nodes. This contravenes poli-
Add pass tgransistor in 1'39‘ 1998] cies for significant risk, single fault tolerance,

stuck-at faults, propagation of faultsf.(rows A
and B of Table 2, rows B and C of TablgRaret
and Fenger 1997/Fig 3.1)

physical layer circuitry.

Unclear how and how well this works. Depends

Diagnosis of faulty nodes. Backup: Upstream Con-| 0N 1394 root working properly. Contravenes pol-

1394 root polls

] nection Failed icies for significant risk, single fault tolerancg,
< noggﬁc_tdhi;oungol”sﬁitsi, Or;a:\llebs_ron stuck-at faults, propagation of faults, and decen-
9 [Chau 18-Aug-1998] | tralized detectioncf. rows A, B, and C of Table

(e LrgEr et 2, rows B, C, and D of Table 3)

This report recommends 1394 underware that
Bus Tiger Team uses dynamic configuration to achieve twae
[Chau 11-Jun-1998] | much tolerance to partitioning faults, wi&h?f

Configuration of 1394
Duplicate buses, with pre-

D. ! [Charlan et al 11-Jun- | as many wires. This meets shuttle requirements
deS|gnie:;[teec:iro(?or:§aI:§ves, ar 1998] for 2-fault tolerance (Europa orbiter), and at the
[Chau 17-Apr-1998] same time configures fromnodes a tree having
radius at most+n/4. Cf. Table 18
Bus Failure Modes FMECA’s not yet performed. In at least 4 modes,
E. FMECAS. [Chau and Holmberg 174 (1a, 1b, 1e, 14), a single fault can cause failurg of

Apr-1998] the entire avionics.

Table 4: Findings with respect to proposed architecture for bus fault tolerance.

L. E. LaForge, revision 18-Oct-1999 6 Jet Propulsion Laboratory document JPL D-16485
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Rows D and F of Table 2 concern FMECA'secommend that FMECA'’s be carried out on all of the fail-

ure modes referenced in column |l of row E of Table 4, and that the corresponding reports be posted in the
online project library. | also recommend that Section 3.3 of the Mission Assurance Plan be updated to ref-
erence a document that, in fact, contains methodologies for performing FMECA's. | also recommend that
each project element manager draft a policy delineating, perhaps by reference, the FMECA methodology
for the respective portion of the project.

Commensurate with row E of Table Rrecommend that a list of success-critical single failure points
(SFPs) be composed and placed in the online project libBginnings of such a list are given in column

Il of row A of Table 2.l furthermore recommend that each of the X2000 documents listed in Section A be
placed into the online project librart appears that eight of these documents are not yet online. More-
over, it appears that the bulk of X2000 meetings are not captured by written minutes. As a result, a great
deal of intellectual effort is lost.therefore recommend that it be standard practice for each meeting’s
moderator to ensure that someone takes comprehensive minutes, and places these minutes in the online
project library. The benefit will be a clearer understanding of which issues are resolved, which are open,
and who is supposed to do what, when.

Rows A and D of Table 3, and all the rows of Table 4, are related to issues raised by row C of Table 2 and
discussed briefly on the preceding page. These issues may be summarizedés d¢écentralized diag-

nosis, at the appropriate level and 2) decentralized configuration, at the appropriate level. In lieu of a back-
door PC bus,| recommend thacf. Sections 3.9 and 3.16jagnosis and configuration be implemented as
underware The benefits of adopting such underware are substantial. Refer to Figure 1. According to Don
Hunter and Carl Steiner, about 108 of the 112 pins in y-axis connectors of the avionics slices are allocated.
This leaves an uncomfortable margin for enhancements. The approach | propose would free at least 20 pins
per node, thus giving designers a bit more breathing room. The underware | propose is an application of the
theory of diagnosis and configuration, and is described in Section 3.

Specific recommendations Findings, references
1. Compose Significant Risk List (SRL); place in online project libra Table 2, row A
> Spell out precise meaning of “fault”, Table 2, row B;
' “point of failure”, “fault containment region”. Table 3, rows B and C
3. Implement mutual test and diagnosis among bus nodes. Table 2, row C
4 Update Section 3.3 of Mission Assurance Plan to reference a docy
’ that, in fact, contains methodologies for performing FMECAs.
Table 2, row D
5 Each project element manager draft a policy delineating, perhaps by
’ reference, the FMECA methodology for the respective project element.
6 Perform FMECA's on all failure modes referenced in Table 2, row F
’ Table 4, row E, column IlI; post reports in online project library. Table 4, row E
Compose list of success-critical single failure points (SFPs);
£ place in online project library. Tl 2, TS o 2l 12
8. Maintainall relevant X2000 documents in the online project librar Appendix A
9 Every X2000 meeting should be captured by minutes, which shg
’ then be placed in the online project library.
10 Substitute diagnosis and configuration, via 188derware r o;/rvasbf a?n drosv (T:a’lezbdlf 83e d-
: for back-door 4C bus. Reduce number of ports per node. tions 3 3’9 3.10 '

Table 5: Summary of specific recommendations.

L. E. LaForge, revision 18-Oct-1999 7 Jet Propulsion Laboratory document JPL D-16485



X2000 Bus Fault Tolerance 3. Fault Tolerance by Diagnosis and Configuration

3. Fault Tolerance by Diagnosis and Configuration

Figure 2 synopsizes diagnosis and configurafi@torge 1997]. Our recommendations incorporate sev-

eral variations on this theme: distributed algorithms for diagrSsisiani and Agarwal 198/{liagnosis
interleaved with configuratiofPreparata et al 196,7and degradable architectujéren and Pradhan

1986] Physically, the architecture may be large or small; it may be a network of computers, or a systolic
array on a chip. For the X2000 bus we adopt a model whereby computational nodes and point-to-point
interconnections map to the vertices and edges of a gfgyles 1976]Each node consists of at least one

slice; a node that is a flight computer spans three or four slices. In the case of X2000 a faulty node that par-
titions the bus is naturally modeled by deleting a vertex from the corresponding graph. Commensurate with
X2000 documentation, we focus on fault tolerance intbiest case

Diagnosis : Configuration
Architecture Target Architecture < Architecture
_ _l_ _ _ _ Hardware/software boundary _ _ _ _ _ _ _ _ _ _ _ _ T _

Diagnosis Configuration - :
— Algorithm — - Algorithm | Setting of Switche
Figure 2: Diagnosis and configuration for fault tolerance: architectures versus algorithms.

A diagnosisarchitectureis an assignment of pairwise tests amangodes, and may be modeled as a
directed graph whose vertices map as elements and whose arcs correspond to test relations. The outcome
of each test is either “pass” or “fail.” The ensemble of these outcomes is knowsymadrame The syn-

drome serves as input tod@agnosis algorithmpurpose of which is to accurately identify the faulty ele-

ments. We assess a diagnosis algorithm in terms of its correctness and efficiency. As to diagnosis
architectures, the most prevalent figure of merit igelseredundancythat is, the average degree of a ver-

tex in the underlying digraph.

As with diagnosis, configuration can be viewed in terms of architectures and algorithms. Often the target
architecture is constrained by shaped-dimensional array or torus with extents prescrifieaForge

1998] ad-dimensional hypercub@rmstrong and Gray 1981br aj-ary balanced tree of heigdfChen

and Upadhyaya 1993For example[Hayes 1976proposes and analyzes graph architectures whose target
architectures include one-dimensional arrays, simple cycles, and balanced trees. For X2000, by contrast,
we simply desire that all of the good nodes be connected by some spanning tree. In this case the target
architecture is known asquorum We may place additional requirements on the quorum, such as graph
diameter or graph radiddn our case the 1394 bus specification prescribes that the quorum must contain a
tree whose diameter €., maximum number of network hops) is at most 16; in the interest of performance,
moreover, we seek to minimize the maximum number of network hops in the tree confiRLBed

1995] Furthermore, we desire that all of the faulty nodes be dissociated from the quorum.

The connectivityof a graphG is the minimum number of vertices whose removal f@mesults in a dis-

connected graph or a lone verfeXo toleratef partitioning faults, therefore, we seek architectures whose
corresponding graph §+1)-connected. Since our primary cost function is the number of point-to-point

3. The worst-case graph model is the simplest that suits our purpose, and is to be contrasted with more general multi-
hypergraph models, or those which probabilistically treat the distribution or behavior of faulty nodes, or the success
of diagnosis or configuratioftaForge et al 1994]LaForge 1994]

4. Thediameterandradius of a graph are its maximuresp minimum eccentricities. A vertexéccentricityis the

maximum distance to some other vertex. The (grdgtancebetween two vertices is the length of the shortest path
connecting them. Depending on the graph, the diameter ranges between the radius and twice tf@headiasd

and Lesniak 1986]Thm 2.4).

5. Our definition and use of verternnectivity is to be distinguished from the edganectivity; the latter equals the
minimum number of edges whose removal results in a disconnected graph or a lone vertex.
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interconnections, we furthermore focus our attentioff-oh)-connected graphs with minimum number of

edgess. A lower bound on this number is readily seen by noting that the connectivity of a graph is at most
the minimum degree of a vertex in the graph — that is, the minimum number of edges impinging on any

vertex! In consequence, the degree of every vertex ifi4e)-connected graph is at ledstL. If we sum

the degrees of all the vertices then we have counted every edge twice. The number of edgésij+ any
connectedh-vertex graph is therefore at leas(f+1)/200 For any integersn >f > 0, moreover[Hayes
1976]achieves this bound with constructions from which we can configure a one-dimensional array. These
constructions are chordal graphs of ordeand sizeli(f+1)/200from which we can removevertices,

O<is<f, and still have an-i vertices connected together as a gth.2 Unfortunately, the diameter of
P,.i equalsn-i-1 and is maximunover all quorums. Thus, chordal constructions that achid¥g, depart
from our objectivé’ Moreover, althougliHayes 1976jand[Kwan and Toida 1981¢onsider graph archi-

tectures from which we can configure trees, the analyses do not apply in the case of X2000 avionics.
Table 6 indexes our notation for a developmentdoasmodel X2000 avionics.

3.1 Quorums from Trees, Cycles, and Cliques

Suppose that anrvertex graphG is (f+1)-connected and, for €i < f, denote byH an arbitrary quorum
induced by deleting vertices ofG. A graphT of ordern is a tree if and only iT is connected and cycle-
free; equivalentlyT is connected and has minimum siz& (Chartrand and Lesniak 1988Thapter 3).

T is said tospanH if T andH have the same vertices and every eddgeisfan edge dfl. For our purposes

it will be more convenient to formulate the problem in terms of grapfusthan in terms of diametér.
This is largely a consequence of Theorem 1, Corollary 1.1, and Theorems 2 and 36, which free us from
having to distinguish the radius of the induced quokufmom the radius of a tree spannidgin the case

of partitioning faults, our candidates for configuration architectures are members Of@T@,yﬁ@Of mini-

mum size(f+1)-connected graphs of ordemwhose quorums, induced by deletion of up vertices, have
radii at mosk. For givenn andf, we naturally wish to assure thais the exact minimum, in which case we

write G p, 1, perhaps with an extra subsctpiWe denote the corresponding radiusphyy, f). Although the

general solution to this problem appears to be unkri@wre can enumerateg nok=2 G nik=mhpn and

G nn2k=2: thatis,p(n,0) = 2,p(n, 1) = [h/20 andp(n, n2) = 1. For other values df we provide upper
and lower bounds op(n, f), and give setef'n,f,kwhose induced quorums have rddgarithmic inn.

O\O O mir_wirr_]um diam_eter 3 O o minir_num radius 2
/ mimimum radius 2 diameter 4
— 0 o
central O e O
vertice central
vertex
@)

Figure 3: While a spanning tree that minimizes diameter also minimizes radius, the converse is not true.

6. Minimizing this cost is equivalent to minimizing the average degree of a vertex, and is therefore analogous to
the objective of minimum test redundancy in the case of diagnosis.

7.[Chartrand and Lesniak 1986[heorem 5.1: vertex connectividyedge connectivitg minimum degree.

8. Thesize eandorder nof a graph are the number of edgesp.number of vertices it contains.

9. Section 3.6 establishes that the radius of chordal graph quorums exceeds that of secant graph quorums.
10. The closest body of work seems to be related to the furjgfiod,,d,f), introduced byMurty and Vijayan
1964] Herej counts the minimum number of edges imarertex graph with diameter at malf such that dele-
tion of anyf of the vertices induces a graph of diameter at mhoSten for this relatively well-studied problem,
results are confined primarily to the cades4, f = 1 or dy = 2 ((Bollabas, 1978]Chapter IV, Sections 2 and 3).
Moreover, our formulation differs in that wi the number of edges &ff+1)n/2[0 and then ask for the mini-
mum diameter or radius achievable itiee that spans the induced quorum.
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Symbol Significance Page(s)
O, xd Ceiling (least integer no less than floor (greatest integer no greater than 9,9
<u,v>; <P> Graph distance between vertieeandv; length of pathtP 15, 51
O(g(n)); Q(g(n)) Set of functions no greategsp.no less thaelg(n), for n > k, constants, k 58
o(g(n)); «(g(n)) Set of functions(n) such that lim},  ,, h/g=0 resp.lim, | ,9/h=0 55
O(g(n)) Intersection of0(g(n))andQ(g(n)) 58

B;(d.i); B;(d.i,m); BE(d.i) | Number of vertices at graph distarideom any vertex irk,%; in Ky inG¢ | 17,32, 45

Cni Chs+1 n-vertex cyclen-vertex(f+ 1)-regular chordal graph; 12, 42,
C(mi); G (m)-vertex secant grapl:dimensionaj-ary C-cube 42,44
A(n, f) Maximum diameter among quorums induced by fewer faults 57
ZK(?j((JdnJ)) () Size (number of edges) of a grabbf ak;% of aK;(n); of aC;? 21,5’45
f, frac Number, fractiorf/n of faulty elements (deleted vertices) that can be toler| 3, 57
G Graph, often one that represents the configuration architecture 8
+ Set of minimum sizgf+1)-connected graphs of order whose quorums

G nik induced by deletion of up fovertices, have radii at molst o
Gt Gnik SetG", 1 that minimizes the maximum radiks 9
H; T Quorum induced by deleting vertices fr@ntree, often one that spaHs 9
Kn=KJ—1; Kjd n-vertex cliqued-dimensionaj-ary K-cube 12,15
K;(n); Kpng? d-dimensionaj-ary K-cube-connected cycle arresp.mi vertices 24, 28
n; nk(d.j); ne(d.j) Order (number of vertices) of a graph; #; of aC;® 3,15, 45
p(n, f) Maximum radius among quorums inducedf loy fewer faults 9
P Sy n-vertex pathn-vertex star 10, 11
VjC(d,i) Number of vertices graph distance at mdsbm any vertex ierOI 45

Table 6: Notation.

Refer to Figure 3. A verteis centralif its eccentricity equals the graph radiusk I$ odd then a path, of
orderk has one central vertex (at the midpoinPgf graph distancék-1)/2 from either endpoint). K is
even therP, hastwo central vertices (at midpoints whose graph distanéki$)/20from one end and
[{(k-1)/20from the other). More generally:

Theorem 1. In any treeT having longest patR, of lengthk-1, there is a unique central vertexat the
midpoint of Py, distancek/2from one end oPy, if and only ifP is unique and is odd, or
if there is a second maximum length p@ih In the latter case lies at the intersection of all
maximum length paths df. If P, is unique ank is even the has two central vertices,
each of which lies distanc&/20from an endpoint oPy.

Proof. Suppose that a central vertexoes not lie on arbitrary paly of maximum lengttk-1. In any tree
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there is a unique path between any two vertiggisgrtrand and Lesniak 1986]hm 3.4). The patR; from
u to the its intersection witR, has nonzero lengih The distance from to the farthest endpoint & is
therefore strictly greater thaik/200 The sum of the distances from a midpaoindf Py to two farthest
leaves in the tree is at mdst (if not thenP, is not a maximum length path). Since the eccentricityisf

strictly greater than the eccentricity wfvertexu cannot be central. Thus any central vertef the tree
lies onPy. If ulies onPy, but is not graph distanck/20from one end andk/20from the other end d?,,

moreover, then there is at least one ventéand anothew, if k-1 is odd) whose eccentricity is less than
that ofu. Therefore, the only candidates for central vertices of the tree are midpditdfoPy is unique

andk-1 is even then the central vertex is the unique midpoiR.df Py is unique ané-1 is odd then there

are two midpoints oPy and these are the central vertices of the tree. If there is more than one maximum
length path then any two of these pahsQ intersect av, midpoint of bothP, andQy (if not thenP,, and

Qg are not maximum length). Since any central vertex lies onfyahdQy, u is the unique central vertex

and lies at the intersection of all maximum length paths. t

Corollary 1.1. The diameter of a tree is either twice its radius, or one less than twice its radius.

By Theorem 1, choosing a graghwhose every induced quorum has a spanningTinegh diameter at
mostk is equivalent to choosing a graph whose every induced quorum has radius &/@&iddn partic-

ular, if G minimizes the diameter & thenG also minimizes the radius @11 As Figure 3 illustrates, the
converse isot true. However, Corollary 1.1 reveals how the converse is “almost” true: choosing a struc-
ture G whose every induced quorubh has a spanning tree with minimum radius either minimizes the
diameter, or comes within one of a minimum diameter spanning tree. In essence, that is, we do as well to
minimize radius as to minimize the diameter of a spanning tree. In terms of 1394 specifications, it suffices
to ensure that the radius of the spanning tree does not exceed 8. But why iscibmvereento formulate

the problem in terms of radius? A principal reason is the following.

Theorem 2. ([Chartrand and Lesniak 1986Thm. 3.5;[Ore 1962] p. 102)For everyvertexu of a con-
nected graplii, there exists a spanning tréef H that is distance-preserving fram

By controlling the structure @&, we should be able to influence and profit from the structuké (bience

trees that spaH). We devote the remainder of this section, as well as Sections 3.2 through 3.8, to charac-
terizing this structure. For the sake of completeness, we begiwittich are 1-connected; that is, graph
architectures that cannot tolerate any partitioning faults. Refer to Figure #vAnexstar S, is a tree
havingn-1 leaves, all connected to a single vertex. The following theorem exemplifies perhaps the sim-
plest use oéxpectationn graph theory: in any set of real numbers whose arithmetic averageat ieast

one element of the set is no less thamd at least one element of the set is no greatexthan

Theorem 3. For integers > f = 0, the stalS, is the uniqudf+1)-connected unlabeled graph of order
and minimum siz&-1 having minimum radius 1 and minimum diameter 2.

Proof. Forn < 2 the theorem holds by inspection. IRar 3, consider the set of 1-connected graphs of min-
imum sizen-1: that is, the trees of ordei([Chartrand and Lesniak 198@Thapter 3). The average degree
of any vertex in any such tree is 2/n> 1. Therefore, at least one verteékas two neighborg andw.
Since the path betweenandw is unique [Chartrand and Lesniak 1986Theorem 3.4), the distance
betweeru andw equals two. Thus, anyvertex tree has radius and diameter at leagsfi.2. By inspec-
tion, §, matches this bound. Further, amyertex tree other tha®, has more than one interior vertex, and
therefore has radius and diameter strictly greater thasd2. HenceS, is the uniquel-connected unla-
beled graph of order and minimum size@-1 having minimum radius 1 and minimum diameter 2. [

11. If not then there is a spanning tf@evhose radius is at mo&t/20- 1. But by Corollary 1.1,
diamQ < 2[1/20- 2 < [@/20+ [/20=diamT, contradicting the hypothesis thiahas minimum diameter.
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T
S S3 Sy &3

Figure 4: Then-vertex stal§, is the unique element @ , o. €(n) = nl. p(n,0) =2.

Note that there is a gap between the numbkkepf edges in a tree (in particular,S5) and the lower bound

(n(f+1)/20~= h/20derived on page 9. It is curious that, by simply allowing one more edge, we can obtain
a 2-connected graph. Refer to Figure 5. As with 1-connected graphs having minimum radius and diameter,
the analogous unlabeled 2-connected grapm-eertex cycleC,, is unigue As is the case for afl> 0,

moreover, the edge coumi(f+1)/20=n/2 of C, matches exactly the lower bound derived on page 9. By
contrast toS,, however, the uniqueness @f is due to constraints on connectivity, and not on radius or
diameter. These observations are formalized by the following.

Theorem 4. For integersn-1>f= 1, the cycleC, is the unique(f+1)-connected unlabeled graph of
ordern and minimum size. C,, has (minimum) radius and diamef&y2] If u is any vertex
of C,, then the quorur®, \ u, induced by deleting, has radiuéh/2J-1 and diameten-2.

Proof. C,, is 2-connected by inspection. Therefore, any minimum size 2-conneetztex graphG has
exactlyn edges. The degree of every vertexComust be exactly two, else some vertex has degree less

than two ands cannot b&-connected. That is, any vertex in G has two neighbors, sayandw. By the
results of Menger and Whitney, there are at least (exactly, in this case) two paths beandsnand
these paths are disjoint except for their endpoif@sartrand and Lesniak 1986Theorems 5.10 and
5.11). One of these patRg , is just the edgéu,v). The other patl®, ,, , traverses some numbier 2 of

vertices ofG, includingu, w,andv. ThereforeP, , U P, , yis a cycle, and each vertexky , O P, yhas
degree exactly two. Suppose that some veriex is not a member of the cydRy , 00 P . SinceG is
connected, there must be a path froto some vertey of P, 00 P,y . Letr be the last vertex along this
path fromz to g that is not a member of the cy&g, 0 P, , . The edgdq,r) is therefore not a part of the
cycleP, U Py w,\ But this means that the degreaja$ at least three, a contradiction. Therefore the cycle
Puv0 Py w.vincludes all the vertices @. That is,G is identicallyC,,, the unique 2-connected unlabeled
graph of orden and minimum siz@. The results for radius and diameter follow by inspection. [

o o« —© SN
FAVEREEEREY,

Figure 5: Then-vertex cycleC, is the unique element @ , 1. €(n) = n.p(n,1) = [h/2[]

*— o

For either minimum radius_atiameter, Theorems 3 and 4 record the exact membership of g, set
whenf = 0 orf =1; that is, when the numbtof faults tolerated is as far fromas possible. It is notewor-
thy to remark on the membership@f, 1 whenf is close ton. A clique, or complete graphis a graptK,
with every possible edge in place. A clique of ondas sizen(n-1)/2; that is, each vertex has degrek.

Theorem 5. For integerd§+1 = n-1, K, is the uniqugf+ 1)-connected unlabeled graph of oraeand

(minimum) sizen(n-1)/2. For0 < i < f, if U; is any set of vertices ofK, then the quorum
Kn \ Uj, induced by deleting the verticesdf, has radius and diameter 1.
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A A

° o
Ky Ka K,

Figure 6: Then-vertex cliqueK,, is the unique element ¢f ,, h.o. €(N) = n.p(n, n-2) = 1

Proof. The degree of each vertex in @ml)-connected graph of ordaris at leash-1.” Further,n-1 is the
maximum degree of any vertex in a (simple) graph of andky, is the unique such unlabeled graph. The

sumn(n-1) of the degrees of the vertices counts each edge twice; Kghaes sizen(n-1)/2. It remains to

establish the connectivity, radius, and diameter. We proceed by inductimnFon a basis the theorem
holds atn = 2 by inspection. Assume the theorem holds ,an. Zn-1) vertices and consider arbitrary &kt

of i vertices to be deleted frol§,, n > 2, 0<i < f. Since the distance between any two vertices equals one,
the theorem holds wheneudyis empty. Otherwise le;[JU; be the first vertex deleted frol§,. Since the

induced quorum is K1, we recursively apply the theorem witkL, -1, and the sa¥; \ u;. t
G nik (f+1)-connected| Radius of quorum and o Diameter of tree span
Fault tolerancel graphs of minimum sizq tree spanning quorum, &  ning quorum, as a References
f n(f+1)/20 induced quo{ & function of the numbey function of the numbe
rums have radii at mokt| 1< fof vertices deleted | i <f of vertices deleteq
Best possible 01 .
0 uniquely the set of 1 2 T'r:1|eg(l)Jrreer:3
n-vertex starsy,
Best possibl& nympon | /20 ifi=0 n-1 ifi=0 i
1 uniquely the set of ) ) Tlr:]|gure 54
n-vertex cycle<, h/20-1 otherwise n-2  otherwise el
Best possibl&  no1 1 ifi =f i
n-2 uniquely the set of 1 . Tﬁggrr:n? 5
n-vertex cliques, 2 otherwise
Best possibleG  n1.1 0 ifi=f 0 ifi=f Discussion
n-1 uniquely the set of i 1 ifi=f1 following
n-vertex cliques<, 1 otherwise 2 otherwise | Theorem 5

Table 7: Characteristics of quorums at either end of the range of the fault tofexamae= 3.

Theorems 3, 4, and 5 establish the exact memberships, as well as the respective exactp(alug¢sabf
the endpoints of the range bfFurther, if we want to tolerate up el faults then we must tolerame?

faults. Therefore, the s@ , 14 is identicallyG , . Table 7 summarizes these results. Both the radius

and diameter of an induced quortiend to change as we delete more vertices ffoMhile the radius

of H is the same as that of a minimum-radius spanninglitoédi, the diameter dfl is in general less than

the diameter of. By Corollary 1.1 and Theorem 2, the minimum diameter of a tree that spans a quorum is
at least one less than twice a lower bound on the radius of the quorum, and at most twice an upper bound
on the quorum radiusCombining this observation with Theorem 5, for example, we conclude that the
diameter of a tree spanning a quorum induced by deleting a single vertex from a cycle is between
2[m/2[ 3 and 2Zn/200- 2. In some cases (such as this one) we can tighten these bounds even further. The
diameters of the fourth column in Table 7, for example, are exacther cases we will establish bounds

on the radius and diameter of quorums, and of trees that span quorums.
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3.2 General Lower Bound on Quorum Radius

Sections 3.3 through 3.7 characterize a taxonomy of gr@bh@k covering K-cubes, K-cube-connected

cycles, K-cube-connected edges, chordal graphs, and C-cubes. Analysis of each set in this taxonomy gives
constructiveupper bounds op(n, f). In each case we furnish lower bounds on the radius of induced quo-
rum. Short of expanding our taxonomy to include every possible graph, however, there remains the ques-
tion whether other constructions have quorums with smaller radii. For this reason we seek a lower bound
on the_problemi.e., one that isndependendf our choice of the embedding graph.

In what follows we take therincipal valueof i modj as the least nonnegative integesuch that, for some
integerq, i = gqj + h. We use the equal sign to denote evaluation of the congruence to its principal value.
For example, -& 16 mod 11while 5 = 16mod11. In anyrootedtree, we define thievel of vertex as its
distance from the root; tHeeightof the tree is its maximum level. We will also make use of the formula
for summing termg throughm of a geometric series with common ratie 1 and constant coefficieat
([Thomas 1969]p. 623:

a(X" ") - fg ax 1)

Theorem 6. (General lower bound on radius). Forf<n-2:  p(n, f)= {logf [ mff_—j?ﬂ

Proof. LetH be any quorum induced by deletingertices ofG, whereG is a minimum sizéf+ 1)-con-

nected graph of ordex, and O< i <f. LetT be a spanning tree bfwith radius the same as thatbfSince

G is of minimum size,n-1 of the vertices ofG have degred+1; one vertex ofG has degree

(f+1) + [n(f+1) mod 2]. These values bound as well the degree of any verfex @tu be a central vertex

of T (by Theorem 1, there are at most two). The radiudsrofy be viewed as theeightof T when rooted

atu. The height of any such tree is minimized when the number of children of every interior vertex is max-

imized. Therefore, the height @fis at least the heiglhtof such a tred' onn-i vertices. All but at most

two of the vertices of ' have at modtchildren. Since the root df' has no parent, it may have as many as
f+1 children. Further, iff andf+1 are both odd the@ contains an “extra” edge, which may add one to the

number of children spawned by some interior vevtdenote by the level ofvin T'. The total number of
vertices inT' is maximized whefl ' is complete; that is, the number of vertice3 iris at most
h-1 h—j-1 @
1+(f+1) Yy fi+[n(f+1) mod 2 fi
3, 3

i=0
For given value of, expression (2) is maximized when the venéx at levelj = 0; that is, whew is the
root of T'. Applying formula (1), we see that the number of verticeE'irs at most

1+(f+1+[n(f+1)moda)ffh_—_11 3)
SinceT' containsn-i vertices, it follows than-i is no greater than (3). Recalling that the height (and thus
the radius) off is at least the heightof T', we conclude

(h—i—1)(f—1)+f+1+[n(f+1) mod J
p(n, f)ZhZ{'ng[ f+1+[n(f+1) mod 2 ﬂ )

Verify that (4) is minimized when 2 n(f+ 1) mod 2. Since (4) must hold feweryintegeri betweerD and
finclusive, it must in particular hold wheér 0; that is, when the righthand side is maximized with respect
toi. This gives the result of the theorem. t
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Though independently derived for this work, the lower bound of Theorem 6 is reminiscent of the develop-
ment of Bollabas and Harary for graphs of ordediameter B, connectivityf+1, and size at most
n(f+2)/2. While the latter is quite close to the minimize six@+1)/200of graphs that ar@+ 1)-connected,

the corresponding constructions admit induced quorums having arbitrary diameter. At first blush, there-
fore, the development of Bollabas and Harary is not directly applicable to X@Eabas, 1978]p 182).
Theorem 6 also generalizes the bound attributed to Moore (circa 1958), that relates diameter, maximum
degree, and number of vertices, when no vertices are dgBstetbels 1997]This said, let us proceed to
expand our taxonomy of graphs and their induced quorums.

3.3 Quorums from K-cubes

A d-dimensional Gray-coded j-ary K-cut}qOI is recursively constructed as foIIO\}‘%KJ-O is a lone vertex
labeled with the null string. Fdﬁjd we i) makg copies oiKJ-d'l; i) join with an edge verticegandv (from
different copies ond'l) if and only ifu andv have with identical labels; iii) prepemndo the label of each

vertex of thdth copy oijd'l. Note thaKjl is just the cliqué&; whose vertices have been labeled from 0 to
j-1. Figure 7 illustrates binary and ternary K-cubesiiasp 2 dimensions.

20
/ NO
21

o1 02
Figure 7: Gray-code labeling of a three-dimensionat#be and a two-dimensionaki€ube

Since our constructions for membersq,)*fn,flkare based od-dimensionaj-ary K-cubes, it pays to know

their salient properties. By step (i) abom?‘f' containg copies oﬂ<jd'1; therefore the ordemk(d, j) of Kjd
equalsjmk(d-1, j). Subject to the initial conditionk(O, j) = 1, verify that the unique solution of this

recurrence relation is nk(d, ) =j¢ (5)

By step (ii) above, the degree of a verteKj?lequals its degree mjd'l plusj-1, the number of edges that
connect it to vertices with the same labels in the other copin'&f Subject to the initial condition of
zero edges inO, the degree of each vert'ﬂ!ijd is therefore d(-1) (6)

Summing (6) over ajl9vertices counts every edge twice. Hence the total nueplperj) of edges irKjd is

ex(d, j) = (-1 (7)
Since grapliistanceis a theme underlying both radius and diameter, we seek to characterize the distances
among vertices irKjd. We abbreviate the distance between verticasdv as<u,v>.1% The Gray-code

labeling prescribed by step (iii) above does not change the distances among veNjeebLﬂﬁtdoeshelp
to elucidate the distances.

12. Unlike C-cubes (Section 3.7), K-cubes @igued basepwith notation based on thkj for aj-vertex clique.

13. Over all vertices in any connected graph, the graph distance, defined in footnote 4, foati &pace

i) <u,v> =0 (nonnegative definite); iu,v>=<u,v> (symmetry); iii)<u,v>=0 if and only if u =v (identity);

iv) <u,w> < <u,v> + <v,w> (triangle inequality). The latter can be used to prove that the diameter is at most twice
the radius ([Chartrand and Lesniak 198Bhapter 2).
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Theorem 7. If uandv are vertices OKjd, Gray-code labeled according to steps (i) — (iii) on page 15, then
<u, v> equals the number of digits where the respective labelsdndv are different.

Proof. By induction ord. For a basis, the theorem holdgat 0 by inspection. Assume that the theorem
holds inO, ... (d-1) dimensions, and regard arbitrary verticeandv in Kjd. By steps (i) and (i) on
page 15u andv are contained in copid§’ andK" of Kjd'l. If K' # K" then, by step (iii), the labels of

u=u'andv = v" differ in the high order digit. Lai" be the vertex ilK" having the same label as,
except for the high order digit. By induction, there is a shortestpaffomu” tov", strictly contained in
K", whose length equals the number of digits where the respective labelsdodv" are different. By
steps (ii) and (iii) on page 18, adjoinsu”. Therefore, there is a pai’ + (u’, u") fromu’ tov"” whose
length equals the number of digits where the respective labels fandv"” are different. Suppose that
some other pat® betweeru’ andv” has length strictly less than thatRf + (u’, u”). Traversing from
u’tov", there is a vertew' whereQ first leaveK' and a vertex" whereQ last enter ". By induction,
the length of the portion @& fromu' tow' is at least the number of digits where the labels adw ' dif-
fer. Similarly, the length of the portion @ fromz" tov" is at least the number of digits where the labels
of z" tov" differ. Moreover, the portion d@ fromw’ to z" is at least one edge long. If the labelsuon
andv" differ in theht" digit then, as we traverse frami tov" alongQ, the value of digih changes at least
once. If the value of thid" digit changes more than once tt@is strictly longer tha®"” + (u', u"). Thus,
as we traverse from' tov" alongQ, the digits where the labels ori andv” are different change only
once. But this means th@tis at least as long &" + (u', u"), contradicting the assumption tHatis
shorter tharP” + (u’, u”). Whenu = u’ andv = v" are contained in different copis resp.K" of Kjd'l,
therefore, €', v"> equals the number of digits where the respective labels famdv" are different, and
P"+ (u',u") is one such shortest path.

If K' =K" then, by induction, there exists a p&th strictly contained iK', whose length is equal to the
number of digits where the respective labels are different; furtherfbiga shortest path from=u’ to

v = V' that is strictly contained iK'. If there is pattQ betweeru' andv’ whose length strictly less than
that of P’, thenQ must necessarily exit and re-eniter. TraversingQ fromu’ to v’', there is a vertew'
whereQ first leaveK ' and a vertex' whereQ last enter& '. By induction, the length of the portion Qf
fromu’ tow’' is at least the number of digits where the labels' @6 w' differ. Similarly, the length of the
portion of Q fromz' tov' is at least the number of digits where the labels ¢ v’ differ. Moreover, the
portion of Q fromw’ toz' is at least two edges long. If the labelsuémndv' differ in theht" digit then, as
we traverse fronu' tov' alongQ, the value of digih changes at least once. If the value oflﬂ’i‘edigit
changes more than once th@ns strictly longer tha®'. Thus, as we traverse fromi tov' alongQ, the
digits where the labels’ andv' are different change only once. Since the portioQ ofitside oK' is at
least two edges lon@ is strictly longer thaf® ', contrary to assumption. Wher= u'’ andv = v' are con-
tained in the same copy’ of Kjd'l, therefore, €', v'> equals the number of digits where the respective

labels foru" andv' are different, and all such paths are strictly containdd'in U

Kjd is vertex symmetrichat is, the perspective Kgd is the same from every verték A valid argument
about properties df;%, with respect to some fixed vertaxremains valid when is replaced by any other

14. More precisely, a grafhis vertex-symmetriof the groupA(G) of graph automorphisms &f acts transitively on
V; i.e, for anyv, w V, there is a graph automorphisni] A(G) such athati(v) =w [Sampels 1997]
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vertex. For example, how many vertices lie at distarficem any given vertex in Kjd’? The answer does

not depend on our choice of and so, without loss of generality, we may assumeuthas at the origin,
i.e., alld digits of its label equd). Geometrically, this is equivalent to asking for the nuniet;i) of ver-

tices on the surface oftall in Kjd centered at and having integer radiiig® To answer this question, we
invoke the structure revealed by the proof of Theorem 7. Suppose that is inK', one ofj copies of
Kjd'l comprisinngd. The number of vertices distancom u' equals the number of verticesHKri that
are distancefromu’ plus the number of vertices in thé& other copies dKjd'l that are distandefromu’.
Focus on any one of these other copiészt K'. By Theorem 7, any vertax' in K" that is distancefrom

u' can be reached by a shortest path ") + P", whereu" is connected ta' and, except for the high
order digit, is labeled the samews FurtherP" is a shortest path of lengitti, strictly inK", fromu” to
v". Thus, in addition to the vertices K that are distancefrom u’, the surface of the ball includes the
vertices inK " that are distancel fromu'. Since this is true for eadrt}d'l #K', we have the recurrence

Bj(d,i) = Bj(d-1,)) + (-1)B;(d-1,i-1)  with boundary conditions B;(d,0) =1, B(d,i>0) =0 (8)

td j=2 j=3 i=4

-ijl0[1| 2| 3|4 |5|6|0]|1]2 3 4 5 60| 1 2 3 4 5 6
0 1 1 1

1 1)1 1| 2 1( 3

2 112]1 1|4 4 1| 6 9

3 113|383 |1 1|6 |12 8 19| 27 | 27

4 114|6| 4|1 1| 8 | 24| 32 | 16 112 | 54 | 108 | 81

5 1/{5|110|10| 5 |1 1|10|40| 80 | 80 | 32 1|15 90 | 270 | 405 | 243

6 1/6|15|20|15|6|1|{1|12| 60| 160 | 240 | 192 | 64| 1 | 18 | 135 | 540 | 1215 | 1458 | 729

Table 8: NumbeB;(d,i) of vertices at graph distancéom any other in d-dimensional-ary K-cube . The table
may be verified or extended using any of the formulae (8) or (9), afrdZaeduces to Pascal’s triangle.

Refer to Table 8. Whep= 2 the recurrence of (8) reduces to that Fascal’'s triangle and we have

Bo(d,i) = E?B = (d—d!i)!i! , the binomial coefficientd choose”. More generally, Theorem 7 allows us to

solve (8) by combinatorial argumd@omtet 1974] A j-nomial coefficientvhose numerator equalshas
j factorsqp), ... g-1! in the denominator. Absent the factorial, the valueg,afum tod = R in

O<hsj-1
consequence, onyl of the factors need be explicated. Such is the custom for examplgswdtle., the

i i i Mo _d _ _d _pdg_gdp
binomial coefficient 00 @oni- i@d—n- M-i0- W-i,id - For the general case, wegjgbe the
number ofdigits having value 0 in the label on any vertedistancd from u. That is,qg is the number of
digits where the label of is the same as the labelwfFor0 < h < j, g,, equals the number of digits of

whose value equals Therefore, the sum of all sughis just the number of digits where the labeV dff-

15. Ifj = 2 then the labels d(zd are bit strings, and we have a special case of {lmdtric: theHamming distance
In 1950 Richard Hamming introduced detection and correction codes that bear his name. These codes are based on
sz packings of balls of given Hamming radifi¢/ékerly 1990] Section 2.14).
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fers from the label ofi. By Theorem 7, that i$,= S and, for0 < h <j, theordered sequenag,
l<hsj-1
. 0.1, abbreviated aqﬂlj, determines the valug, = d - i. Note thatq+i,j may be viewed as a vector

whose components are nonnegative integers no greateir. fhanote byQ*i’j the setof all vectorsq*i,j.
For any vector q+i’j the multinomial coefficient

d d d def . .
0 0=0 . . Oz et 20 7
o -+ @1 T DXA=1), @y~ (@ Diayg o1 = Oty O counts the number of vertices at distance

from u. Over all suchy™;; O Q";;, summing these multinomial coefficients gives

d
B.(d, i) = 0?0 9
i) +..Z . 0940 ©)
gtij O Qi

For example, we use (9) to verify two entries of TabI@g,g ={(0,2), (2,0), (1,1)}.B5(3,2) is therefore

3 _
3o 28%H 3 o8 HL T 15— 3+3+6=12 . Q54 = {(0,0,2), (0,1,1), (1,0,1), (0,2,0), (1,1,0),

o,0 3 0,0 3 0,0 3 p,O0 3 O,O0 3 0O-
(2,0,0)}. ThusB4(32) is 3 DlOQZD 0101 10" 01,1010 0102 00" 01,11 007012 q 00~ 27+

Although (9) illuminates the underlying combinatorics, its convenience is limited by the difficulty of enu-
merating the membership Q‘*i’j. This subproblem appears to be even more difficult than computing the

unordered partitions of an integ€rand leads to seek an alternative formulaBéd,i).

We can expres;(d,i) in closed form by noting that there %?% ways for vertices in a Gray-codliq;d to
havei digits that are different from those of the origy u. Using all the nonzero digit values raglixve

can form(j—l)i labels from any given set ofsuch digits. By the fundamental counting rule, that is, we
obtain an expression that, by contrast to (9), is readily computed:

B(d. i) = (-1)! I*H (10)

Verify by substitution that (10) satisfies the recurrence and boundary conditions of (8).

Equations (8), (9), and (10) are both relevant and illustrative of the power of Theorem 7. In addition to pro-
viding three ways of computing the number of vertices at distafroen any vertex irKjd, the theorem
springs forth other analytic results. For example, (9) and (10) imply the double identity:
d d
Dd D -
-1)i 11

2 2 feyn s 200 = ¢ (11)
Two paths arénterior-disjointif, apart from their endpoints, they do not intersect. In what follows we will
once again invoke two important facts: a) the connectivity of a graph is the minimum number of interior-

disjoint paths joining any two verticég;b) the connectivity of a graph is at most its minimum deéﬁ‘ee.
With respect to (a), suppose that gr&bhas order at least 3 and that between every pair of vertice&in
there ard+1 interior-disjoint paths of length at magtAny quorum induced by deleting<O < f vertices

of G, has diameter at mogt This observation motivates our formulations and proofs of Theorems 8 and 9.

16. Aninexact m-maximum unordered partition of the integisranm-vector of nonnegative integerghose inner

product with a vector containing the firatpositive integers equais(Anderson 1998]pp. 65-67).

17. Attributed to Menger and Whitney, this result is used in the proof of Theorem 4. It is recounted by Theorems 5.10
and 5.11 ofChartrand and Lesniak 1986]

18. This is used on page 9 to bound from below the size (@ &rconnected graph. Also see footnote 7.

L. E. LaForge, revision 18-Oct-1999 18 Jet Propulsion Laboratory document JPL D-16485



X2000 Bus Fault Tolerance 3.3 Quorums from K-cubes

Theorem 8. (Connectivity, upper bound on diameter.j # 3 then between verticeasandv in Kjd there
ared(j-1) interior-disjoint paths, each of whose length is at ndest. At leastd of these
paths have length at mast

copyK ' of K&t copyK Fof K;42

vOo— T
* * \
shortest path it “fromu’to V', .
length at most-1
by Theorem 7

(d-1(-1)-1

interior-disjoint paths

{Pyrw O W, w") O (w",v")}
each of length at mositt+1,
at leasd-2 no longer thad

J-2 interior-disjoint paths
{(u',u) O Py O(v,v")}
each of length at mosit-1

Figure 8: lllustration of the first part of the proof of Theorem 8

Proof. By induction ord. For a basis, the theorem holds by inspectiah=ap andd = 1. Assume that the
theorem holds ifd, ... (d-1) dimensions, and regard arbitrary verticeendv in Kjd, d>1, > 2. By steps

(i) and (ii) of the construction on page 16andv are contained in copiés’ andK " of Kjd'l. Refer to Fig-

ure 8. IfK' # K" then inK' inductively form(d-1)(j-1) interior-disjoint paths, of length at maktfrom

u=u'tov'. Herev'is the vertex iK' whose label, except in the high order digit, matches thatof".
Pick the firstd-1 of these paths to have length at nib4t Since these paths are interior-disjoint, each such

path passes through exactly one of the neighbegs ..., Wg.g)g.1) ©of v'. The path
Pyrwr O (wy',v') O (v, v") has length at most. Exclusive ofwy’, there remair{d-1)(j-1)-1 neighbors
Wo', ... Wg.1yg-1) Of V' in K'. By steps (ii) and (i) of the construction on page 15, each endpoint
w' O{wy', ... Wg.1)g-1)t of the paths fromu’ to a neighbow’ of v' is adjoined to a counterpart
w" O{wy",... Wg.9)-1)"} in K", Except for the high order digit, the labelswhandw" are the same.
Furthermore, the construction assures that eachvsUuanK " is a neighbor of . Augmenting each of the
(d-1)(-1)-1 paths P, with edges (w’,w") and (w",v") yields a set of(d-1)(j-1)-1 paths
{Pu'w O W,w")0(w", v")}, each of length at most+1. The firstd-2 of these paths have length at
mostd. These paths are interior-disjoint with each other and Rjiy, O (wy', v') O (v', v"). For the
remainingj-1 paths choos@!’, u”) 0 Py« g+ O (Wy", v"), a path of length at modt along with the set
{(u',u") O Pyey« O (V, v")}. Hereu andv” have labels whose low ordetl digits are identical to those
onu' resp.v”, but whose corresponding high order digit differs from that of either v". Py« is a
shortest path between andv’, strictly contained irK KK By Theorem 7P+ has length at
most d-1; thus (u',u)OPy 0 (V,v") has length at mostd+l. The j-1 paths
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(u',u”) 0 Pyw e O (wy", v7), {(u’, u) O Pys v+ O (v', v} are interior-disjoint with each other as well
as wWithPy y O (W', v') O (v, v") and{P O (wy', v') O (v', v")}. The ensemble constitutel§-1)
interior-disjoint paths. Each of has length at nibst, and at leasd of them have length at mast

Refer to Figure 9. IK' = K" then inK" inductively form(d-1)(j-1) interior-disjoint paths, of length at
mostd, fromu =u'tov=v'. At leastd-1 of these paths have length at m4t, and each of the others
has length at most. For the remaining-1 paths choose the ¢, u") O Py, O (V' v')}. Hereu®
andv' have labels whose low ordel digits are identical to those ar andv’, but whose corresponding
high order digit is different?,, ., is a shortest path betwesh andv", strictly contained irK *2 K'. By
Theorem 7Py, \+ has length at most1; thus(u’, u*) O Py, . O (V', v') has length at most+1. Thej-1
paths{(u’, u") O Pyt ys O (v*, v')} are interior-disjoint with each other as well as with (ihd)(j- 1) inte-

rior-disjoint paths irkK' fromu =u'tov = v'. The ensemble constitutd§-1) interior-disjoint paths, each
of which has length at modt-1. Since > 2, at leas{d-1)(j-1) = d of these paths have length at mast

copyK ' of K1 copyK *of K&

(AN
interior-disjoint
paths{P, v},
each of length at
mostd

shortest path ik * from u*to v*, °
length at most-1
by Theorem 7

vt O

-1 interior-diéjoint paths
{(u', ") O Pyeye O, V)
~ _ each of length at mosit+1

Figure 9: lllustration of the second part of the proof of Theorem 8

Forj = 2 the assertion of Theorem 8 is falsag, for C, = K,? there are two paths between adjacent verti-

ces, and one of these paths has lengtid3= 2. Regrettably, throughout this work we will often be rele-
gated to treating the cafe 2 separately. This admittedly awkward situation is, apparently, a consequence
of the natural order of things. For example, the radix 2 analog of Theisem

Theorem 9. (Connectivity, upper bound on diameter.) Between two verticé@zci'nd > 1, there arel
interior-disjoint paths of length at ma$t1. At leastd-1 of these paths have length at ntbst

Proof. By induction ord. For a basis, the theorem holds by inspectiotha2. Assume that the theorem
holds in 2 ... (d-1) dimensions, and regard arbitrary verticesndv in sz, d >2. By steps (i) and (ii) of
the construction on page lbandv are contained in copi¢s’ andK " of sz'l. If K'#K" then, inK' and
analogous to Figure 8 (but witholﬁt':), inductively formd-1 interior-disjoint paths, of length at magt
fromu=u'tov'. Herev'is the vertex irK’' whose label, except in the high order bit, matches that of
v =Vv". Pick the firstd-2 of these paths to have length at ntb4t Since these paths are interior-disjoint,
each such path passes through exactly one of the neighiors..., wg.y)' of v'. The path

Py wr O (wy',v) O (v',v") has length at most. Exclusive of wy', there remaind-2 neighbors
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Wo', ... Wgqy of v' in K'. By steps (ii) and (i) of the construction on page 15, each endpoint
w' O{wy', ... wg.;y} of the paths fromu’ to a neighborw’ of v’ is adjoined to a counterpart
w" O {wy",... Wg.0)"} iIn K", Except for the high order bit, the labelswhandw" are the same. Further-
more, the construction assures that each sucn K" is a neighbor o¥". Augmenting each of the-2
pathsPy,, with edgegw’, w") and(w", v") yields a set ofi-2 paths{P,,, O (W, w") O (w", v")},

each of length at mositt1. The firstd-2 of these paths have length at nibsthese paths are interior-dis-
joint with each other and witP, O (wy', V') O (v', v"). For the remaining path choose
(u',um) OPywy»O(Wy",v"), a path of length at mostd, interior-disjoint  with
Pyrwr O (wy', v') O (v, v") and with{P,+,,, O (wy’, v') O (v, v")}. The ensemble constitutdsnterior-
disjoint paths. Each of these paths has length at drtdstand at leasi-1 of them have length at mat

If K' = K" then, inK' and analogous to Figure 9, inductively fodrl interior-disjoint paths, of length at
mostd, fromu=u'tov =v'. At leastd-2 of these paths have length at mib4t, and the other has length
at mostd. For the remaining path chooge, u") O Py, O (v', v'). Hereu" andv’ have labels whose

low orderd-1 bits are identical to those ori andv’, but whose corresponding high order bit is different.
Pu+v+ IS @ shortest path betweeh andv®, strictly contained itk *# K'. By Theorem 7P, . has length
at mostd-1; thus(u’, u*) O Py, O (V%, v') has length at most+1. The pati(u’, u) O Py, O (V', V')

is interior-disjoint with thed-1 interior-disjoint paths ifK’' fromu=u’'tov =v'. The ensemble consti-
tutesd interior-disjoint paths, each of which has length at ndedt, with at leasd-1 having length no
greater thaml. O

Combining equations (5) and (7), remarks (a) and (b) on page 18, and Theorems 8 and 9:

Corollary 9.1. K]-d hasorderj ¢, connectivityd(j-1) and minimum sizé&2d(j-1); ©.

Corollary 9.1 naturally leads us back to our central question: “What is the radius or diameter of quorums
induced by deleting up tal(j-1)-1 verticesof K; ?” We can now begin to address this issue.
Theorems 8 and 9 give upper bounds on the diameter of any gtibinohiced by deletingvertices from

Kjd, O<i<f=d(-1)-1. Ifj> 2 and 0z i < d-1then from any vertex in H we can reach all other vertices

of H by a path of length at modt If j > 2 andd < i < d(j-1)-1=f then from any vertex in H we can
reach all the vertices ¢f by a path of length at modt-1. If j = 2 and0 < i < d-2 then from any vertex
we can reach all the verticestdfby a path of length at modt If j = 2 andi = d-1=f then from any ver-
tex u, we can reach all the verticestdfby a path of length at modt-1. In an extremali €., worst-case)
sense, these bounds are best possible. To see this we construct a class of counterexamples.

Consider arbitrary vertex’ in copyK ' of K1 0 K. Ford > j= 2, formH by deletingd-1 neighbors of

u', leaving undeleted one neighbot O K" of u'. The label ofu” is same as that an’, except for the
high order bit. Lev' be the vertex ifK' having label whose low orddrl bits are all different from those
of u’. In H any path of shortest distance'<v'> necessarily enteds " via the edgdu’, u"), follows a
path to some vertex' (1 K", re-enterK' via edggz”, z'), and follows a path from’ tov'. The length of
this path is at leastu’, u"> +<u",z"> +<z",z2'> +<z',v'>22 +<u',v'> = d+1. By equation (5),

this construction holds for each of tAé values thati can take on. Of th%dz_dlg guorums formed by

deletion ofi = d-1 vertices from a Gray-codeddimensional binary K-cube, that is, at lealthave diam-
eterd+1. This class of counterexamples refutes an "almost correct” claim of [Armstrong and Gray 1981]

Between any two vertices mzd, d > 1, there arel interior-disjoint paths of length at mast
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The preceding claim is corrected by Theorem 9, and generalized by Theorem 8.

Continuing the counterexamples, for 2 letu be the vertex whose label is all zerH# is justKj1 withu

deleted. Fod = 2 delete frorrKj2 the vertex whose label |, j-1], along with the vertex whose label is
[-1, Q]. Any path from{0,0] to[j- 1, j-1] cannot go through the deleted vertices. The digits of the labels in
any such path change at least three times. By Theorem 7, any patf0fobrio [j- 1, j-1] in sz must

therefore have length at least3I+1. Ford > 2 recursively forrﬂ-ljOI by replacingK’, the zeroth copy of
K% O K9, with H%%; connect vertek of H;% to vertexh of every other copy df;%%; prepend the label
on each vertex dﬂjd'l with a zero. Complete the constructiorl-q?' by deletingu”, vertex O of thej-1)St
copy oij""1 =K". Consider any shortest pa&@fromu’, vertex 0 inde'l, tov”, vertexj-1 inK". Letv'’
be the vertex ded'l whose label is the same a thatvdn except that the high order digitwfequals zero
instead of-1. If P runs through—ljd'1 andK " but through no other copy Kgd'l thenP cannot be of length
d; if it were then there would be a pathl-ilpd'1 of lengthd-1 fromu' to v', a contradiction. P runs
through some copy cb(jd'l other tharK" then, by Theorem R has length at leastt1. ThereforeP has
length at leastl+1, and this is the diameter bljd. By changing the label far’, there arg ways to con-

structHjl. In higher dimensiond, there are Hl ij _25 =j(G-1) ways to choose the placemeh'cj‘?)'iL

andK". Of thegidd E guorums formed by deletionicf d vertices from a Gray-codatidimensionaj-

ary K-cube, that is, at Ieajs‘ﬂ(j-l) 41 have diameted+1.

Theorem 10.Let H be any quorum induced by deletingertices fronKJ-d, O<is<f=d(-1-1. The diam-
eter ofH is at leastl.

Proof. Verticesu andv areoppositeif they are distancd apart;i.e., their labels differ in every position. By
equation (10), any given vertedhas(j-1) d opposites; that is, there djel) d opposite pairs that include
Summing over alj d vertices counts every pair of opposites twice, and the total number of opposite pairs
equals 1/ﬁj]d(j—l) d Each vertex we delete froK]d removes at mogj-1) d opposite pairs. Therefore, there
remains at least one opposite pair as long as

[d(-1)-1]G- 1) < ¥£%-1) @ (12)
(12) is satisfied ifl < 292 Ford> 3, that is, (12) is valid for all integey& 2. Ford = 2 verify by substi-
tution that (12) is satisfied for gl& 2. Atd = 1 the theorem follows by inspection. U

Theorem 11.Let H be any quorum induced by deletingertices fronKjd, O<i<f=d(-1)-1.1fd =1,
i = 0, orj = 3 then the radius df is at leastl. If j = 2 andi = 1 then the radius dfl is at leastl-1.

Proof. By (10), any undeleted vertexhas at least one opposite as long ad(j-1)-1 < (j-1) d (13)

(13) is satisfied il < 291 Ford=> 4, that is, (13) is valid for all integejg 3. Ford = 3 andd = 2 verify
by substitution that (13) is satisfied for pit 3. The theorem follows by inspection for 0, as well as for
d=1,j=2. It remains to consider the casel,d = 2,j = 2. By equation (10), every vertexin a binary

K-cube has exactly one opposite. Thus, deleting any vertexKQHr‘reaves its opposite with eccentricity
at leastd-1. By equation (10)there aregdﬂlg +1=d+ 1 vertices inK, at distancel-1 or d from u.
Since at mostl-1 vertices are deleted, the eccentricity of every vertex is atdelast il
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3.3 Quorums from K-cubes

Number i Radius Diameter Number i
Radix j of | of vertices deleted, of vertices deleted,
K-cube Os<isf At least At most At least At most Os<isf
f=[(-)ibgn] -1 f=[(-)ibg; n] -1
0 log, n
Theorem 7 log, N from O
5 from 1 [log, ] Theorems 9, 10 to [logy Nn] - 2
to [log, n]- 2 llog,n] - 1 Theorem 9
Theorem 11 llog,n] + 1 lo
) 2 gn | [logyn] +1 _
[logz 1] - 1 Theorem 9| Theorem 1q Theorem 9 [logz 1] - 1
from O log; n log; n from O
. to [Iogj n] -1 Theorems 8, 11 Theorems 8, 10 to [Iogj n-1
>
from [log n] log n [log;n] + 1 log n [login] +1 from [log; n]
to[(-1)0og;n] -1 | Theorem 11 Theorem 8| Theorem 10 Theorem 8| to[(j-1)Iog;n] - 1

Table 9: Characteristics of quorums induced by deleting vertiakdiofensional-ary K-cubesKjd. Kjd is
constructible if and only if the maximum number of fadiésjuals (-1)1bg; n] -1 andd = log; n.

Candidates for K-cubes

[ [
\ —e— Connectivity constraint d = (f+1)/(j-1)
—#— \ertex-count constraint n = jd
X Minimax (d,j) selected

Dimension d

v\‘\‘\’\qHHH—Q—Q_vL
0 T T T - T T : : Radix
0 2 4 6 8 10 12 14 16 18 20
Figure 10:Exact conditions on the numberE 16 of vertices and maximum numbier 3 of faults
tolerated for constructibility of a K-cubes 2,d = 4. A K-cube is constructible if and only if the
constraints intersect at integer values afl andj = 2. Plot by GRAFT calculator described in Section 3.8.

Candidates for K-cubes

4
L
5 —&— Connectivity constraint d = (f+1)/(j-1)

—#— Vertex-count constraint n = jd

Dimension d

B

0 2 4 6 8

1 1 T Radix j

10 12 14 16 18 20

Figure 11: K-cube not feasible. /4, f) = (16, 2), constraints on connectivity and vertex count fail to

intersect at integer values. However, as Figure 13 showqdssible to construct a K-cube-connected
cycle. Plotted by GRAFT calculator described in Section 3.8
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Refer toTable 9 In between the extremés 0, 1 andf = n-2, n-1, this section covers values mandf
satisfyingn = j 9 and f+1 = d(j-1); that is, K-cubeg Kjd} = Q+n,log n,log nWhose dimension, radix, and

vertex degree are related by formulae (5) and (6). Figure 10 illustrates these relations. However, and as
illustrated by Figure 11, our results do not include the cases where degree of a vertex is not equal to that of
some K-cube. As shown by Figure 13, we may be able to substKutelae-connected cycitthe degree

is less that of some K-cube. That is, when f+1<d(-1) (14)

3.4 Quorums from K-cube-connected Cycles

A d-dimensional j-ary K-cube-connected cycle of ord&tenoted<jd(n), is the result of replacing each of

the j 9 vertices oijd with n mod j9 cycles, each of which contairi®/j90 vertices, along with
] d_n modj d cycles, each of which contaifis/| d0vertices. Refer to Figure 12. For a basis, a zero-dimen-

sional K-cube-connected cydlqo(n) is a cycle with vertices labeled from O/[[i/| 031 (.e., from O to
n-1). The high orded digits of the label on a vertexin cycleh of Kjd(n) are identical to thd digits on the
label of vertexh of the correspondingjd. The low order digit om is its label in the correspondiwgo(n).
Vertex u shares an edge with vertexf and only if i)u andv are neighbors in a basic cyd{(;o(n); or

ii) the low order digits olu andv are identical, and the high order digits differ in exactly one position, or

iii) there arelh/j d0vertices in the basic cycle of whichs a memberh/j d0vertices in the basic cycle of
whichv is a member, and andv have the highest labels in their respective basic cycles.

Ko'(11) %
edge count 17, | ‘

minimum size 23
3-connected graph \
Ks'(11)

edge count = 23, 03
one greater than minimum size
of a 4-connected graph 02

Figure 12: A K-cube-connected cyct{(;,d(n) has minimunsize if and only i{19a) or (19b) holds.

Since each basic cycle must contain at least three vertices, it follows that n3=j d (15)
is a constraint on the number of vertices in Kﬁifn). If 0 = n modij dthenn = m[ﬂ"I for some positive inte-
germ. Since it contains exactiy vertices per basic cycle, we denote sutﬂjﬁdém[ﬂd) by Kmmd.
Each vertex of(mmOI has degree d(j-)+2=1+1 (16)
Summing the degree of every vertex counts each edge twice, hence

ex(d, j, n) = Y- 1]+ 2) = Yamap - 1]+ mypd (for n=m[d (17)

Since eithej orj-1 is even, the first term on the righthand side of (17) is an integer; (17) is therefore an
integer. Substitutingl(j-1)+2 = f+1, we see that (17) equdls(f+1)/20 Thus 0= n modj ¢ implies that
the number of edges Kmf is exactly that of any minimum si£&-1)-connected graph mnmd vertices.

Suppose on the other hand that @ mod] d By step (iii) above, we connect the vertex with the highest
label in each of the modj d long cycles to the vertex with the highest labetath of the d_n modj d
short cycles; moreover, we count thésenodj d)(j d.n modj d) “extra” edges only ai=1.
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Summing the degree of each vertex counts each edge twice. The number of quﬁe)simtherefore
e(d, j, n) = Al nTd[j- 1+ 2) + (n modj @) - n mod;j )]0 (18)

Substitutingd(j-1)+2 = f+ 1, we see that (18) equakIn(f+1) + (n mod]j d)(j d.n modj d)]D That is,
K;%(n) has minimum sizéh(f+1)/20if and only if

either a) 0=nmodj d or b) j=2,d=1,f=2,nodd (29)

By comparison to K-cubes, our K-cube-connected cycles must stitisiyconstraints: (15), (16), and
(19). Despite this, and as illustrated by Figure 18j-3)-dimensional K-cube-connected cycle may be
constructible where the corresponduigimensional K-cube is not. Note that (19) says quite a bit about

the structure of K-cube-connected cyd*qz%(n) of sizelh(f+1)/2 eitherKjd(n) is aKmmd, or, for alln and
f=2, Kjd(n) = Kzl(n) comprises two cycles, one with/2[vertices, the other consisting [@f/20vertices.

The latter holds since ifis not odd then 2 divides in this case (19a) is satisfied, and we haKen[gl. In
particular, the size of any one-dimensional binary K-cube-connected cycle is the samébad 2hiaif a
3-connected graph with fewest edges. This is of some interestl@j?'(cre was, in fact, one of the candi-
date architectures proposed [[Bharlan et al 11-Jun-1998)pr X2000 avionics (indeed, Section 3.10 rec-
ommendusl(n) as a graph architecture of choice). Note also that our definition of a K-cube-connected
cycle is somewhat different from that describedRreparata and Vallemin 1984ahd analyzed bjBaner-

jee et al 1986]For the remainder of this section we writén place of the integer valug/j dn

Candidates for K-cube-connected Cycles
| | | | | | |

Gr%?lt?St —e— Connectivity constraint d = (-1)/(j-1)
racix} \ —— Vertex-count constraint n/3 >= jd
Xl Minimax (d,j) selected

. o
admit- <
ting a D
()
E
o

&
h 4

o &
4 A 4 2 2 4 L 2

. 0 S . — a— ’ ——9 L
ding K- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2629%I

Figure 13: K-cube-connected cycle feasible where K-cube is not. Compare to Figure 12.

Theorem 12.(Connectivity, upper bound on diametdf.) > 3 then between verticesandv in Kmmd there

ared(j-1)+2 interior-disjoint paths, none of whose length exceakdsn - 1. The length of
d(j-1)+1 of these paths is at makt- (m/20+ 1. The length ofl+1 of these paths is at most
max2,d) + max(2, (m/20).

Proof. Denote byC’' and C" the respective basic cycles far and v. Suppose thatC'#C"
(implying d = 1), and the low order digits of the labelswr u’ andv =u" are the same. By Theorem 8,
betweeru’ andu” there arel(j-1) interior-disjoint path¢P,, } of length at most+1, at least of which
have length at most The low order digit of the label on each vertex of every one of the pafRg ip}

is the same as the low order digitwhandu"”. Letw' andz' be neighbors ofi’ in C'. By Theorem 8,
there are shortest interior-disjoint patg , Py » fromw' resp z'0IC" tow" resp z"C"; the low

order digit of the label on each vertexRy ,» andP, » is the same as the low order digitwhandw"”
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resp.z’ andz"; neitherP,, \,» norP, , traverses more thahedges. Thel(j-1)+2 interior-disjoint paths
(U,w)OPy wOW",u"), (U,z)OPz »0(z",u"), and {Py ,} have length at most
d+2<d+0m/2[+ 1<d+m-1 (the latter is a consequence of (15)). The length of
(U, w’) 0Py w O(W",u") is at mostd + 2< max2,d) + max2, (m/20); the length of thel shortest
paths in{Py +} is at mostd; therefore, at leasi+1 of the prescribed paths have length at most
max2,d) + max 2, (m/20).

pathP, gof length at most
/ o basic cycleC " copy ofK;®

~
N

basic cycleC’, copy ofK;®

shortest pati®, ,
resp. Rigypin C' resp.
length at mostim /200

™ Jast edge iy, yo0 PygvoD (vE v7)

basic cycleC”, copy ofK;®

d(-1)-1
interior-disjoint paths
{Py, unl Pyg oD (v 5 v™)} each of length at most
d+ 1+ 0n/20,
at leasd-2 no longer thad + Om/20

pathPy ,+has length at mosh -2
pathQ, - has length at most

Figure 14: lllustration of the second part of the proof of Theoremprtdf of Theorem 19.

Suppose thaE' # C" (implying d = 1) and that the low order digits of the labelsuionu' andv = v" are
different. Refer to Figure 14. By Theorem 8, thereddjd) interior-disjoint pathgP, .} betweeru’ and

u"0dC", all of which have length at modt1, and at least of which have length at modt The low order
digit of the label on each vertex of every one of the pat{jn,} is the same as the low order digitwn
andu”. Let(u’, u") be the last edge in any one of t{g1)-1 longest such patt, , and replace this
edge with a shortest pafy ,gin C Yfollowed by the edgé¢v Svm). Applying this process to all but a
shortest path ifP, »} yieldsd(j-1)-1 interior-disjoint pathgP, ,nU Py o (v 5 'v™}, each of length
at mostd+1+ [m/2[] with at leastl-1 of these paths no longer thar Om/20. LetQ,,  be the path in
{Pu, u} (of length at mostl) not modified by the preceding procedure. Augn@pt, with Py \», the

shortest path (of length at masn/20)) betweeru” andv” in C". LetPy , be the shortest path (of length

at mosttm/20)) in C' betweenu’ andv'. AugmentP ,, with Q,, », a path between’ andv" (and of
length at mostl) that passes through the same basic cycl€k,ag . LetZ be the neighbor of' along a
pathP, » O (z',v') fromu’ tov'in C’, such thaP, , does not intersect the interior Bf; , (sinceC’
contains at least three verticésis distinct fromu’). AugmentP,; , (whose length is at most -2) with
Qz, . a path between' andz" (and of length at most) that passes through the same basic cycles as
Qu,u and Qy \». The combination oPy , 0 Q, » 0O (z",v"), Qy v 0Py, Py v OQy , and
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{Pv uoO PygvoO (vil v} constitute d(j-1)+2 interior-disjoint pathsP, 0 Q; » 0O (z",v") has
length at mostd + m-1. d(j-2) of the paths in{P, ;0O PyqyoU (vi v} have length at most
d+0mP2+ 1. Qy wOPy v, Py yvOQy, along with the d-1 shortest paths in

{Pu uoO Pyg ol (vt v™)}, comprised+1 interior-disjoint paths, each of whose length is at most
d + Om/20< max2,d) + max 2, Cm/20).

Suppose tha€' =C". By Theorem 7, there am(j-1) basic cycleC 3 connected tcC' via edges
{(u’, u")}. Within any suctC Pthere is, fromu” toV', a shortest patR, 7 of length at mostin/20 Here

V' is the vertex whose low order digit is the same as that,dout whosel high order digits are the same
as those on” (i.e., that differ in one digit from the high order digits on the label af orv'). Thed(j-1)
paths {(u’,u’)OPyq,g0 (V,v)} are interior-disjoint, and each has length at most
2+ m/20< d + Om/2[+ 1 (the inequality is satisfied fat> 1, and does not pertain@t 0). To this add
the shortesP,, ,, and longesQ,, \, paths between andyv, strictly contained irC'. The latter two paths
have lengths at mos$im /2 d + Om/20resp.m-1<d+m-1. If d = O then there ig+1 = 1 path
(i.e, Py ) of length [m/20< max2,d) + max(2, (m/2[). Otherwise,d>1 and anyd+1 paths from
{(u', u*) 0 PygvoO (v*, v')}, traverse no more thant2[in/2[0k max2,d) + max 2, Cm/2[) edges. Ver-
ify that Py \» andQy  are interior-disjoint with each other and witb ', u’) O Py g0 (v, v)}. [

Theorem 13.(Connectivity, upper bound on diameter.)j lf 2 then between verticesandv in Kmmd

there ared+2 interior-disjoint paths. The length of each of these paths does not exceed
d + m - 1. The length ofl+1 of these paths is at makt [n/2(0+ 1; the length ofl of these
paths is at most mgx,d) + max2, Cm/20).

Proof. Denote byC’' and C" the respective basic cycles far and v. Suppose thatC'#C"
(implying d = 1), and the low order digits of the labelswr u' andv = u" are the same. By Theorem 9,
betweeru’ andu” there ared interior-disjoint pathgP »} of length at mostli+1, at leastd-1 of which
have length at most The low order digit of the label on each vertex of every one of the pafRg ip}

is the same as the low order digitwhandu”. Letw' andz' be neighbors ofi’ in C'. By Theorem 9,
there are shortest interior-disjoint patyg ., Py » fromw’respz’'inC'tow" respz” inC". The low
order digit of the label on each vertexRy » andP; , is the same as the low order digitwhandw"
resp.z' andz"; neitherP,, » nor P, » traverses more that edges. Thel+2 interior-disjoint paths
(u,w)OPy wOW",u"), (U,z)OP; »0(z",u"), and {Py ,} have length at most
d+2<d+ 0Om/20+ 1<d + m -1 (the latter inequality holds by (15)). At leastl of these paths have
length at mostd+2<d+ 1+ On/200 Among the latter, at least paths have length at most
d + 2<max?2,d) + max 2, (m/20).

Suppose that’ # C"(implying d = 1), and the low order digits of the labelswr u' andv =Vv" are dif-
ferent. As in the proof of Theorem 12, the essential argument is illustrated by Figure 14. By Theorem 9,

there ared interior-disjoint pathgP,, »} betweeru’ andu"0C", all of which have length at modt1,
and at least-1 of which have length at modt The low order digit of the label on each vertex of every one
of the paths ifP } is the same as the low order digitwnandu”. Let (u', u"”) be the last edge in any

one of thed-1 longest such patt, , and replace this edge with a shortest Bath,;in C Dfollowed
by the edgdv " v"). Applying this process to all but a shortest patfPip »} yieldsd-1 interior-disjoint
paths{P o Pygvod (v 5'v™)}, each of length at modt-1+ (/20 with at least ma@, d-2) of these
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paths no longer thath+ [M/20]. LetQ,  be the pathifP,, .} (of length at mosd) not modified by the
preceding procedure. Augme@y, » with Py \», the shortest path (of length at moist/2[) betweeru”
andv"”in C". LetP, \ be the shortest path (of length at miast2[) in C' betweeru’ andv'. Augment
Py v with Q; \», @ path between’ andv” (and of length at most) that passes through the same basic
cycles aQQy . LetZ be the neighbor of’ along a patiP, , O (z',v') fromu’ tov’ in C’', such that
Py 7 does not intersect the interior@f , (sinceC’ contains at least three verticgds distinct fromu’).
AugmentP, » (whose length is at most -2) with Q, », a path betweemn’ andz"” (and of length at
mostd) that passes through the same basic cyclesQas, and Qy ,». The combination of
Py 70Qz 202", v"), Qv u OPyy, PyyvOQyu v, and{Py o Pygyol (v v™)} constitutes
d+2 interior-disjoint pathsP, », 0 Q, » 0 (z",v") has length at most + m - 1. One of the paths in
{Pv uoO Pyg ol (vEv™)} has length at mosai + Cm/2+ 1. At leastd interior-disjoint paths have
length at mosd + [m/20< max2,d) + max(2, (m/20); namely,Qy O Py \», Py v O Qy », andd-2
of the paths ifPy 0 Pyg ol (vE v}

Suppose thaE' = C". By Theorem 7, there arkbasic cycle§C B connected t€' via edgeq(u’, u)}.
Within any suctC there is, fromu” to V', a shortest patR, - of length at mostim/201. Herev' is the

vertex whose low order digit is the same as that'obut whosed high order digits are the same as those
onu’ (i.e. that differ in one digit from thé high order digits on the label of or v'). Thed paths
{u',u) O PugvoU v, v)} are interior-disjoint, and each has length at most
2+ Om/20< d + Om/20+ 1. To this collection add the short&} |, and longesQ,, , paths between

and v, strictly contained inC'. The latter two paths have lengths at mast/2[k d + On/200resp.
m-1<d+m-1. If d=0 then there is d+l1=1 path (e,Py, ) of length

M /20 max2,d) + max 2, (m/20). Otherwise, d=1 and any d+1 paths from
{u',u) O PugvoU (v', v')}, traverse no more than+2Cim/200< max2,d) + max2, (n/20) edges. Ver-

ify that P,  andQy , are interior-disjoint with each other and with ', u’) O Py o0 (v, v')}. O

Theorem 14.(Connectivity, upper bound on diametégtween vertices andv in aK,(2m+1) there are

3 interior-disjoint paths, each of which is no longer tireirl. The length of 2 of these paths
is at most 2+ [/2[7; the length of one of these paths is at most{in/2[1

Proof. By (15),m= 3. Without loss of generality 1€’ be the basic cycle with the fewer numbreof ver-
tices. Denote b ' andC" the respective basic cycles foandv. We consider six cases.

Case | Suppose thdaf ' # C" and that the low order digits of the labelsuornu' andv = u"” are the same.
Verticesu' andv" are connected by an ed@e, v") whose length is at mo&t< 1+ [m/20 Letw" and
z" be neighbors afi” in C". If the low order digit on one a¥" orz” (say,z") equalsmthen either there
is a) a pati(u’, z") O (z", V') (i.e., U’ is vertexm-1 of C') or b) a patHu', x) O (¥, ') O (', V'), (.e, X

is vertexm-1 of C"). If (a) then there is also a pdth, w) O (W', w') O (W', V') (i.e, w andw" are verti-
ces in C' resp. C' whose low order digit equalsn2). If (b) then there is also a path
(u,w) O W, w")Ow,Vv)(i.e,w andw” are vertices i€ ' resp. C' whose low order digit equals 1). If
the low order digit on neithew” or z" equalsm then, in addition to(u’,v"), trace the paths
(u,wHDOW,w)O MW", v)and(u,z')O(Z,2") 0", V).
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Py w O (W, w) O W', V') has w”
length at mosin+1
- - VII
A Cr =~ < ~ - u"
-~ —_ X"
Py « O (X, V') has length (U, u") O Py O (X', V') has c”
“’gt mf)st 1+) /20 9 length at most 2 [m/20

(U, u") O Py e O (W', V)
has length at most4 [m/20

Py w O W, x)0O(X,V')has
length at most + [im/20

Py y O, y) O, x") 0 (X', V')
has length at mosn+1

CH

Figure 15: lllustration of Case Il of Theorem, Lidandv in different cyclesy the “extra” vertex.

Case Il. Suppose thdaE ' # C" and that the low order digit @f=v" equalan (thusu = u' andv" differ in
their low order digits). Refer to Figure 15A. Létbe vertexn-1 of C' (with two neighbors irfC”, x" and
v"); denote byP,  the path inC’ fromu =u’ tox’, according to increasing value of the labels. With
the zeroth vertex ilC’ (W andu’ may be identical), writ® ,y for the path inC’ from u’ to w, in
descending order of labels. Taking’ to be the zeroth vertex i€", pathsPy , O (X, V') and
Py w O (W, w") O (W', v') are interior-disjoint. The length &,  plus the length oP; , equalsm-1.
Pu':vv’ has lengthO<k<m-l; Py , has lengthm-k-1. That ié,Pu'le O (X, v") has Iéngthk+1 and
Py w O W, w) O (W, V') has lengthm-k+1. If k< m-k then the length oP, , O (X, V') is at most
1+ m/20 and the length ofPy v O (W, w') 0 W', V') is at mostm+1l. In addition, trace
(U, u) 0Py O, V'), where inC" vertexu” and pathP . are counterparts ' andP, , in C'.
(u,un O Pu",X" O (X", V') has lengttk+2 <2 + [m/2[J and is interior-disjoint fron®y O (x V') and
Py w O W, W’) O W', Vv"). Refer to Figure 15B. If k>m-k+1 then the length of
Py wOMW,xX)OX,v) is at most [Om+1)/2[<1+ [m/20 and the length of
Py,y U (y,y) d (", x")O (X", Vv')is at mosim+1. Herey' andy” are the vertices a' andC" whose
low order digit equalsn-2. In addition, tracgu’, u") O Py \» O (W', V'), where inC" vertexu” and path
Pyw are counterparts tou’ and Py, in C'. (U,u")0Py, 0W, V) has length
k+ls< m+1)/2< 1+ O0m+1)/2[J and is interior-disjoint from Py , O (W, x) O (X, V') and
Puy B, y) Oy, X) O KX, V).

Case lll. Suppose that' #C", that the low order digit of =v" is not equal tan (i.e,, v" is not the
“extra” vertexz" in C"), and that the value of the low order digit on the labei’'a$ less than that on”.
Refer to Figure 16A. Let be vertexm-1of C' (with two neighbors i€ ", X" andv"); denote by, , the
path inC' fromu’ to x’, according to increasing value of the labels. Witthe vertex inC' whose low
order digit is the same as that oty write P, , for the path irC’ fromu’ toV, in descending order of
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labels. Denote b, y the path inC’ fromu’ tox’, in ascending order of labels. L} \» be the path in
C" fromz" tov" that includes the zeroth vertex@f. PathsP, , O (v, v') andP O (X, Z') O Py \»
are interior-disjoint. The length &, \, plus the length oP; , andP, . equalsm. P, \, has length
0<ks<m; the length oP; , plus the length oP, » ism-k That is,P, , O (V, V') has lengttk+1 and
Py x 0 (X,2') 0Py has lengthm-k+1. If k< m-k then, as shown in Figure 16A, the length of
Py v O(V, V') is at most * [m/20and the length oPy , O (W, w') O (W", V') is at mostm+1. In
addition, tracgu’, u") O Py, where inC" vertexu” and pathP ,» are counterparts ' andPy , in
C'. (u,u) 0Py, has lengthk+1<2+ [m/2[J and is interior-disjoint fromP, , O (v, V') and
Py x O (X,2Z") O Py . If k= m-k+1 then, as shown in Figure 168y , O Py , O (V, V') has length at
most 1+ [m/200 (U,u) 0Py O(X',Z)0Px has length at most £[m/200 and
Py w O (W, w) O (W', V') has length at mosb+1. Herew' andw” are the vertices &2’ andC" whose
low order digit is one greater than those/cndv’ (W andw” may be identically’ resp.u”).

CI

Py v O (V, V') has length c”

at most I+ /20

Puler O (X’, Z") O PZ",\/' has ~ -
length at mosin+1 ~
(u, u") O Py has length at

most 1+ /20

Py w O W, w) 0O MW,V has
length at mosin+1

Py x 0Py v O(V,V') has (U, u") O Py O (X", V') has
length at most  [m/20 length at most 2 [m/20

Figure 16: Case lll of Theorem Jdandv in different cyclesu’s low order digit less than that of

Case IV. As for Case llI, only in this instance assume that the value of the low order digit on the label of
u' is greater than that on'. Refer to Figure 17A. Witk' the vertex inC’ whose low order digit is the
same as that on”, write P, , for the path inC' fromu’ toV, in descending order of labels. Denote by

Py x the path irC’ fromu’ toX, in ascending order of labels. L} \» be the path il€" fromz" tov"

that passes through the zeroth verteg bf PathsP,, \, O (v, V') andPy , O (X, Z') O P, \» are interior-
disjoint. The length oP; \, plus the length oP, , andP, . equalsm. P, ,, has lengtt0 < k< m; the
length of Py,  plus the length ofP, . is m-k That is, Py O (v, V') has lengthk+1 and
Py x 0 (X,2') 0Py has lengthm-k+1. If k< m-k then, as shown in Figure 17A, the length of
Py v O(V, V') is at most * [m/20and the length oPy , O (W, w') O (W, V') is at mostm+1. In

addition, tracgu’, u") O Py, where inC" vertexu” and pathP ,» are counterparts ' andPy , in
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C'. (u,u) 0Py, has lengthk+1<2+ [m/2[J and is interior-disjoint fromP, ,, O (v, V') and

Py x O (X,2") 0Py . If k2 m-k+1 then, as shown in Figure 178y , O Py , O (V, V') has length at
most 1+ [m/2[0 (U,u)0Pyw O(X',Z)0Py has length at most €[m/200 and

Py w O (W, w) O (W', V') has length at mosn+1. Herew andw” are the vertices &2’ andC" whose

low order digit is one greater than those/odndv’ (W andw" may be identically’ resp.u”).

(u, u") O Py has length at
most 1+ m/20

Py v O (V, V') has length
at most 1+ [m/20

Py, x O (X, X") O Py » has
length at mosin+1

A.

B.

(u,w) O W, w) 0Py » has
lengthatmosm+1 || ~ X ¥—T" 77 7 7 — — c"

*

Figure 17: Case IV of Theorem Jd4andyv in different cyclesy’s low order digit greater than that of

Py x O Py v O(V, V') has

length at most ¥ [m/20 (U, u) O Py o 0 (', X") O Py

has length at most® /20

Case V. Suppose that both=u"andv=v"are inC'. LetP, , andQy  be interior-disjoint paths i’

betweeru’ andv’'. The sum of the lengths of the pakths , andQ,, , equalsm. Without loss of general-
ity assume thaPy, , is the shorter path with lengtyy i.e., 1< k< 0Om/2[< 1+ [M/2[1 The length of

Qu, v is thereforem-k with /200 m-k< m-1. At most one ofi’ andv' can have more than one neigh-

bor inC". Without loss of generality assume tiabnly has one neighber’ inC". Letu” beu' ‘s neigh-
borinC" that is closest te” via a pattP \», strictly contained i€ ". The length oP» \» isk+1, and so

(U, u) 0Py O(v", V) traverses at mosk+3 edges. If the length oPy , is at its maximum

Om/2[ 1+ [m/20thenQy v has lengthim/200< 2 + [m/20and(u', u’) O Py \» O (v", V) has length

at most 3+ /20 m+1. (The latter is established by considering separately the casesnmviseesen
and odd, and noting that 4 is the minimum value rof even.) Otherwise, the length of

(U, u) 0Py O (v", V) is at most 2= [m/2[] andQ,; \» has length at mosh-1< m+1. Verify that
Py v, Qu, v, and(u’, u") O Py \» O (v", V) are interior-disjoint.

Case VI Suppose that both=u" andv =v" are inC". LetP » andQ» \» be interior-disjoint paths in

C" betweeru” andv’. The sum of the lengths of the paths \» andQ, \» equalsm+1. Without loss of
generality assume th&, \» is the shorter path with length at mégm+1)/200< 1 + [m/2[d The length

of Qy \ is therefore no greater tham< m+1. Letu’ beu” ‘s neighbor inC"' that is closest tg” via a
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pathRy, v, strictly contained irC'. While it is possible that the low order digit on the label bbr v’ dif-
fers from that ofu” resp. v, in any case the length oP, . is at most [m/2[] Thus
(u",u) O Py v O(V, Vv") traverses at most2 (m/200edges.

In every case, we have three interior-disjoint paths, each of whose length is at#hpsto of the paths
have length at most2 0Om/2[% one path is no longer than+1Cm/2(1 il

Corollary 14.1. Kjd(n) has connectivitg(j-1)+2 and minimum siz&%[ nl{d[j- 1]+ 2) = h(f+1)/200f and
only if conditions(15), (16), and (19) are satisfied.

Theorems 12, 13, and 14 extend Theorems 8 and 9 from K-cubes to K-cube-connected cycles. For
O<i<f=d(-1)+1, the theorems enable us to bound from above the diameter of any ddidndonced

by deletingi vertices from a<,-d(n) whose size, with respect i3 1)-connectivity, is minimum.

If j> 2 and0 < i < dthen from_anyertex inH we can reach all other vertices by a path of length at most
max2,d) + max 2, (m/20). If j> 2 andd+1 <i < d(j-1) then from anwertex inH we can reach all other
vertices by a path of length at molst Cm/2[0+ 1. If j> 2 andi = d(j-1)+1 = f then from_anyertex inH

we can reach all other vertices by a path of length at dnesh - 1.

If j= 2,nis even, and < i < d-1 then from_anyvertex inH we can reach all other vertices by a path of
length at most md2,d) + max(2, m/20). If j > 2, nis even, and =d then from_anyertex inH we can
reach all other vertices by a path of length at mostm/2[+ 1. If j > 2, nis even, and=d+1 =f then
from anyvertex inH we can reach all other vertices by a path of length at drostl.

If j=2,nis odd,d = 1, andi = 0 then from_anyertex inH we can reach all other vertices by a path of
length at most + [(n-1)/400 If j= 2,nis odd,d = 1, andi = 1 then from_anwertex inH we can reach all
other vertices by a path of length at most 2Z(n-1)/400 If j= 2, nis odd,d = 1, andi =2 =f then from
anyvertex inH we can reach all other vertices by a path of length at mbgh41) /2.

Unlike our development for K-cubes, we do not exhibit a class of extremal counterexamples that show
how the preceding bounds are best possible. Instead we pursue analogs to Theorems 10 and 11. Our devel-

opment extends (8) and (10) By(d,i,m), the number of vertices at distarideom any vertexu in Kmmd.
Without loss of generality assume thias label consists of all zeros. At= 0 we have am-vertex cycle
Kjo(mu]d). For 1<i < On/20two vertices lie at distanédrom u. Fori = /2= m/2, mis even, and one
vertex lies at distance/2 from u; for i = Om/200=(m-1)/2, mis odd, and two vertices lie at distance

(m-1)/2 fromu. In higher dimensions, suppose that u’ is inK', one ofj copies oﬂ(mmd'l comprising

Kmmd. The number of vertices distanc&om u' equals the number of verticesKri that are distance
fromu' plusj-1 times the number of vertices in any other ckgyof Kmmd'l that are distandel from the

counterpart"K" of u’. Thus, the recurrence relation #(d,i,m)is identical to that (8) foB;(d,i), but
with different boundary conditions:

Bj(d.0,m)=1, B(0,i,m)=2, 1<i < (/20 By(0, (/2] m)= 2 - [(m-1) mod 2] (20)

Table 10 illustrates the triangular computatiorBgtl,i,m), analogous to that shown fBy(d,i) in Table 8.

With boundary conditions (20), we do not know how to solve the recurrence of (8) in a closed-form fash-
ion akin to (10). However, weanshed light on the solution imposed by (20) by noting that a shortest path
from the originu to anyvertexv in Kmmd passes through the origin of some other basic cycle. Therefore,
the number of vertices at distaricom u equals the number of vertices having a label that differs from
that ofu in i of thed high order digits (but whose low order digit is the same), plus (fanning out in the
respective cycles) twice the number of vertices having a label that differs from thatigf of thed high

order digits, plus ... plus twice the number of vertices having a label that differs from thainof

i - Cm/20- 1 of thed high order digits, plus eithdwice the number of vertices having a label that differs
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from that ofu ini- Cm/20of thed high order digits (iim is odd)_orthe number of vertices having a label
that differs from that ofi in i - [m/200of thed high order digits (ifnis even). That is:

L0 |lm=1|0 A0 [m=110
B.(d,i,m) = mmDI'b—J ’ d + mmmlw—ﬂ ’ d (21)
jush LY = i_1)i-h O O i_1)i-h 0O O
: > U-D"7Eihg > U-D7E ho
h=max(Qi-d) h=max( 1i-d)

For the summand in (21) we have used relation (10). The lower and upper indices follow by noting that
Bj(d,i) is nonzero if and only if & i - h < d. In two cases of particular interest, (21) reduces to

B;(d,d+[M/20 m)= (2 - [(m-1) mod 2]){j-1)¢ (22)
B;(d,d+0/ 2031, m) = 20G-1) ¢ + di{2 - [ (m-1) mod 2)-1)¢* (23)
v d j=2,m=5 j=3, m=4
10 1 2 3 4 5 6 710 1 2 3 4 5 6 7
0 1| 2 2 1| 2 1
1 1| 3 4 2 1| 4 5 2
2 1| 4 7 6 2 1| 6 | 13 12 4
3 15|11 13 8 2 1| 8 | 25 38 28 8
4 1| 6 | 16| 24 21 10 2 1|10 41 88 104 64 16
5 1| 7 | 22| 40 45 31 (12| 2 1| 12| 61 170 280 | 272 | 144 | 32

Table 10: NumbeB; (d i,m) of vertices at graph distanc&om any other "Kmm , formed by replacing
each of the vertices of al-dimensionaj-ary K-cube with a cycle om vertices.

Theorem 15.Let H be any quorum induced by deletingertices fromemd, O0<i<f=d(-1)+1. The
diameter oH is at leastl + [im/201

Proof. Verticesu andv areoppositeif they are distancd + [im/20apart;i.e., the high order digits of their
labels differ in every position and their shortest path along a correspondiagex cycle is has maximum

length /201 If mis odd then, by equation (22), any given vertdras %j-1) d opposites; that is, there are
2(j-1) d opposite pairs that include Summing over ailn[j]d vertices counts every pair of opposites twice,
and the total number of opposite pairs equljjsl) d Each vertex we delete froK}nmd removes at most

2(j-1) d opposite pairs. Therefore, there remains at least one opposite pair as long as
[d(j- 1)+ 1] 20-1) 9 < 2m[Yg-1) @ (24)

By (15),m=> 3; since = 2, inequality (24) is satisfied if+1 < 32 9. The latter holds ifl < 2 91, which, by
differentiation, is readily verified for all nonnegatidelf mis odd then we obtain inequality (24) with both

sides divided by two. The theorem follows sinedl < 32 d, il

Theorem 16.Suppose thai=3 and letH be any quorum induced by deletingrertices fromK md,
O<isf=d(-1)+1. Ifi= 0 then the radius dfl equalsd + 0m/201 If d(j-1) < i < d(j-1)+1,
mis even, and < 2 then the radius df is at leastl + (/2 1. Otherwise the radius éf
is at least + [m/201
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Proof. If i = 0 thenH = Kf; by (21), the radius df,y;f equalsd + Cm/201 Supposen is odd and > 3.
By (22), there remains at least one vertex opposite to any undeletedweagéong as

d(-1)+1 < 20-1) @ (25)

(25) is satisfied il < 2 &1 The latter holds by Theorem 11. Supposethiateven angl>d > 3. By equa-
tion (22), there remains at least one vertex opposite to any undeletedwastiong as

d(-1)+1 < (-1) @ (26)

(26) is satisfied ifd+1 < 2 91 Verify that the latter holds for>d=> 3. Suppose tham is even and
i <£d(j-1)-1. By equation (22), undeleted verteékas an opposite as long as
d(-1)-1< (-1) 9 (27)
which holds by Theorem 11. Suppose timas evenj = 3, d < 2, andd(j-1) < i < d(j-1)+1. By equations
(22) and (23), fronu there remains at least one vertex at distanedm/200ord + [im/200- 1 as long as
d(-1)+1<(2j +d - 2)-1) 91 (28)
Verify by substitution that (28) holds fdr=0, 1, and 2. il

Theorem 17.Suppose thai=2 and letH be any quorum induced by deletingertices fromemd,

O0<i<f=d+1.Ifi= 0then the radius ¢f equald + [im/2[1 If mis odd and = 1 then the
radius ofH is at leastl + [im/200 Otherwise, the radius éf is at leastl + Cm/20- 1.

Proof. If i = 0 thenH = Kmmd, with radiusd + [m/20by (21). Ifmis odd then, by (22), there remains at

least one vertex opposite to any undeleted ver@xlong as the number of deleted vertices is less than 2.
For the remaining cases note that (28) is satisfied \vheh il

Theorem 18.For positive integerm=3 let H be any quorum induced by deletimgvertices from
K,}(2m+1), 0<i<f= 2. If i= 0 then the radius dfl equals ¥ [n/2C1 If mis odd and
i = 1 then the radius df is at least # [im/2[] Otherwise, the radius &f is at leastm/2]

Proof. By the procedure on page 2@21(2m+1) may be formed by inserting am¢1)3t vertexz' between
them™ and zeroth vertices! resp.w”, in one of the cycle§ " of Kmmd, and connecting’ to them™ ver-
tex X' in the other cycl€'. The distance from the ed@€, Z') to any other vertex of K21(2m+1) equals
the distance from" tovin Kmmd. For any vertexi # X", u# Z', the distance frora to other any vertex of
K21(2m+1) is at least as great as the respective distanlé%ﬂ. Therefore, the radius of any quorum of
K21(2m+1) is at least as great as thak(p,ﬁ[zd. Equality follows ai = 0 by Theorem 14. il

Forj>3,d=3,andm= 4, Theorems 12 and 16 imply that the radius of any quétunduced by deleting
i vertices frorermd equalsd + [m/20wheneve0 < i < d(j-1)-1. However, foi = d(j-1)+1 there is a gap
of about Cm/200between the upper and lower bounds of Theorems 12 and 16. Let us narrow this gap.

Theorem 19.Suppose thai=3 and letH be any quorum induced by deletingrertices fromK md,

0<is<d(-1)+1=f.1f 0<i<d-1then the radius df is at mostd + [im/2(1 If i = d then the
radius ofH is at most + max2, (m/20). If d+1<i < d(j-1)+1 =f then the radius dfl is at
mostd + [m/20+ 1.

Proof. Sincei < d(j-1)+1 =f, any quorum has at least one basic c¢cleontaining all of its original ver-
tices. To see this note that
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[d(-1)+2]/j9<1 (29)

whenever = 3 andd = 1 (by differentiation, the lefthand side of (29) decreases with increpsindd).
Letu' be any vertex of’, and consider any other vertein H. If vis inC' then<u,v> < [n/20and the
theorem holds. Otherwisgrv" resides in some other basic cy€lg, some of whose vertices may have
been deleted. IKmmd, v" has two neighbonsg” andz"” (one of which may be a counterpafttou’). Let

v', w', andz' be the vertices df ' whose labels have the same low order digit'gswv”, and, respec-
tively, z". Without loss of generality assume that the shortest Baty[IC' betweenu’ andw' is no
longer than the shortest p& ,[0C' betweeru’ andz’. By Theorem 8, there adfj-1) paths betweewn’
andv”,w' andw", andZ andz’, with the length of each path at mdstl. Moreover, these paths are pair-
wise interior-disjoint. For each of these three pair of vertices, Theorem 8 guaranteksfttiz d(j-1)
paths have length no greater tharForO <i < d-1, we can always reacH' fromu' by taking a shortest
pathPy , of length at mostim/2[] to v', thence via one of the remaining paths betweeandv" of
lengthd. Thus, forO< i < d-1, the radius oH is at mosd + [im/20

Fori>d note that neitheP ,, nor P, , has length greater thdmn/2[] Moreover, the length d?;
equalslim/20if and only ifm =3 andu'=v'. Thed™ vertex deleted may be" itself, or it may lie along
one ofd shortest interior-disjoint paths betweenandv"; however, these events are mutually exclusive.
That is, either there is a pa#y ,, thence tov”, or there is a path v, thence tov”, thence (via a single
edge) tov". In other words, fori=d there remains betweem' andv" a path of length at most

d + max(2, (m/20). In addition to thed+1 paths of lengtld + Cm/20or d + max 2, Cm/20), there are
d(-2)+1 paths (including one that traverseg ;) of length at mosd + [m/2(J+ 1. Therefore, for

d+2<i<d(j-1)+1=f the radius oH is at most + [Om/20+ 1. 0

Theorem 19 tightens t@ + [m/200+ 1 the upper bound + m -1 obtained directly from Theorem 12 at
i =d(j-1)+1 =f. Extending Theorem 13:

Theorem 20.Suppose thgt=2,d =2 and letH be any quorum induced by deletingertices frorermd,

O<isd+2=f.If0<i<d-2then the radius dfl is at mosd + In/2[1 Ifi=d - 1 then the
radius ofH is at mostd + max(2, (m/20). If d<i <d+1=f then the radius dfl is at most
d+ Om/20+ 1.

Proof. Sincei < d+1=1f, any quorum has at least one basic c¢cleontaining all of its original vertices.
To see this note that df2]/29<1 (30)

wheneverd > 2 (by differentiation, the lefthand side of (30) decreases with incredsiigtu’' be any
vertex ofC’, and consider any other vertein H. If vis inC' then<u,v> < [Im/2[Jand the theorem holds.
Otherwisey=v" resides in some other basic cy€l&, some of whose vertices may have been deleted. In
Kmmd, v" has two neighbone” andz” (one of which may be a counterpafttou’). Letv’', w’, andz' be

the vertices o€ ' whose labels have the same low order digit'asv"”, and, respectivelyg”. Without loss
of generality assume that the shortest Bgth,,[JC' betweeru’ andw' is no longer than the shortest path

Py 20C' betweeru' andz'. By Theorem 9, there atkpaths between' andv”, w’ andw"”, andz and

Z', with the length of each path at mdstl. Moreover, these paths are pairwise interior-disjoint. For each
of these three pair of vertices, Theorem 9 guaranteesthaff thed paths have length no greater tlian

For O<i<d-2, we can always reash’ fromu’ by taking a shortest pa®y, ;, of length at mostim/2[]

tov', thence via one of the remaining paths betweeamdv" of lengthd. Thus, for 0< i < d-2, the radius
of H is at mosd + [m/2]
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Fori > d-1 note that neitheP ,y norP, , has length greater tham/2[] Moreover, the length d¥

equalsCin/200if and only ifm=3 andu’'=v'. Thed™ vertex deleted may be" itself, or it may lie along
one ofd shortest interior-disjoint paths betweenandv"; however, these events are mutually exclusive.
That is, either there is a pam, v thence tor”, or there is a patﬁu,, w> thence tav”, thence (via a single
edge) tov". In other words, fori=d-1 there remains betweam' andv" a path of length at most

d + max2, (m/20). In addition to thed paths of lengthd + Cm/20or d + max2, Cm/20), there are 2
paths (including one that traverdgg ») of length at mostl + [m/200+ 1. Therefore, fod<i<d+1=f

the radius oH is at most + [m/20+ 1. il
Theorem 20 tightens td + [im/2[+ 1 the upper bound + m -1 obtained directly from Theorem 13 at

i=d+1="f. Let us formulate analogous results jfer 2, d = 1. This case is relatively important since it
pertains to what is arguably the most practical graph architectures for X2000 awbriestion 3.10).

Theorem 21.Let H be any quorum induced by deletingertices fron'Kmml, 0<i<2=f. The radius of
H is at most ¥ [(m/20]

Proof. By Theorem 17, it suffices to consider the cases & 2=1f. Delete a single vertex from the
basic cycleC' that originally containsi =u’. For a root lev =v" be any vertex irC" (there may be

another) that is opposite to. In the quorum formed by deleting, the distance from"” to any other ver-
tex is at most ¥ /20 (Cm/20if m is even). This bound is preserved if we delete a second vertex

w=w' fromC’, so it remains to consider the deletion of a second vertax" from C". In this case let
the rootv = v’ be a vertex irC ' that (with respect t€") is opposite tai’. Betweerv' and any other ver-
texz'in C' there is a path of length at mas/20(Cm/20- 1 if mis even) strictly withirC'. With z" the
counterpart inC" of z' in C', there is a path via' of length at most ¥ Cm/20(Cm/20if mis even)
betweenv' andz". This applies to very vertex @", with the possible exception af =u”" #w", an
undeleted vertex which (since is deleted), has no counterpartih Vertexu" originally has two neigh-
bors inC", at most one of whictv" has been deleted, and at least one of wkfickmains undeleted. mh

is even then irC' the neighbors ofi’ (one of which is the counterpatt of xX") are distancém/20- 1
from v'. Therefore, a (shortest) path @' from v' to x', followed by (x', x") O (x", v"), has length
1+ Om/200 If mis odd thenx' lies at distancém/200- 1 or Cm/20fromv'. If the former then traverse the
1+ Cm/20edges of the (shortest) pathGr from v’ to x’, followed by (x', x") O (X", v"). If the latter
then, as shown in Figure 18, has a neighbar’ in C' that (with respect t€') is also opposite to’ (r ' is
also opposite to the counterpaftof w"). Lettingr ' be the root reduces to the former case. In particular,
traverse the ¥ [im/20edges of the (shortest) pathGn fromr ' to x’, followed by(x', x") O (x", v").

v
(oppositeu’)

w (may bev')

C n Q
WI
(deleted, may be")

rl
(oppositeu’ andy’)

/

/
— O U (deleted)

XI

(may ber’) u” (not deleted)

| Py yhaslengtim20-1]  |Pv.x Dz()ign)/g%s length Pr x Dl():- ég/g%s length

Figure 18: lllustration of the last case of the proof of Theorem 21.
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3.4 Quorums from K-cube-connected Cyclei

Radius, as a function of the number of vertices

= log, (N/m)= 2

1 (if mis even),

Underlying Number i e . Number i
K-cube of vertices deleted, O<i <f=1+ (j-1)log; (n/m)0] of vertices
K;“(n) deleted At least | A deleted

radixj = 2, (0} 1+ m/20 (0}

dimension 1 (if mis odd) equality by Equation (22), Theorems 17 and 4 1 (if mis odd)
d=1

= log, (n/m)

1 (if mis even), Cm/20 1+ Om/20 1 (if m even),
number of
e 2 Theorem 17 Theorem 21 2

n = 2meven

radixj = 2, 0, if m=2 then 1; else ¥ /20 0, 1 (if mis odd)

dimension 1 (if mis odd) equality form> 2 by Theorems 18 and 22 2 (ifm=2)
d=1

= og, (n/m)0 L e 1 (if m even)
1 (if mis even), Om/20
number of 5 Theorem 18
vertices eore 1+ Om+1)/20 2 (if m> 2)
n = 2m+1 odd Theorem 22
0, Cm/ 20+ log, (n/m) 0,
1 (if mis odd) equality by Equation (22), Theorems 17 and 4 1 (if mis odd)
radixj = 2, 1 (if mis even),
. . Cm/20+ log, (n/m) from 2to
dimensiond llog, (n/m) - 2

flog; (n/m]} - 1

equality by Equation (22

, Theorems 16 and ]

Cm/20- 1 + log, (n/m) max 2, [m/20)
number of d 1 +fr:30m 2(:1(7m) Theorem 17 + log, (n/m) [log, (n/m) - 1
1+ Om/20+ log, (n/m) log, (n/m),
Theorem 20 1+ log, (n/m)
from O to Cm/20+ log; (n/m) from O to

flog; (n/m) - 1

if d= Iogj (n/m)=1
then 1+ On/20

HEREe [IJ‘r-O 1?[11% ((nn//mm)]) t-ol else max(2, fm/20) log; (n/m)
dimension ) [m/20+ log; (n/m) + log; (n/m)
d= Iogj (n/m) Theorem 16 Theorems 19 and 27
number of l(j'é)%g' (ném/) ) if d=log (n/m)=1
verticesn = m + (- g (n/m — Y -
(m Od(Jj) then 1+ [m/20 1+ |20Tn/m)
i Gl else 1+ m/20 ?cl)
- g (n/m ) _ +log; (n/m) -
R _ Cm/20- 1 + log; (n/m) 9 1+ (j-1)bg; (n/m
1+(J(nlw)g%g’n()n/m) Theorem 16 Theorems 19 and 2 +* 01106 (/m)

Table 11: Radius of quorums induced frdadimensionaj-ary K-cube-connected cyclds’@d(n).

Theorem 22.Let H be any quorum induced by deletingertices fromK,1(2m+1), 0<i<2=f. Ifi<1
then the radius dfl is at most # [im/2[0 Otherwise, the radius is at most I{m+1)/21

Proof. By Theorem 18, it suffices to consider the casas & 2 = f. Suppose we delete a single verex
from the basic cycl€' that originally containsn vertices, includings = u'. This splitsC’, but leaves
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intact the other basic cyc@”. For a root lev=v" be a vertex ilC" (there may another) whose counter-
part inC' is, with respect t& ', opposite ta1'. In the quorum formed by deleting, the distance frona”

to any other vertex” in C" is at most{m+1)/2[1 Otherwise, by traversing the shortest pat@ fhfrom

v" toz", and thence the edge”( z') we can reach any verteX in C' by a path whose length is at most
1+ Om/20 These bounds on distance are preserved if we delete a second vert€x.from

Suppose instead that we delete a single vertex” from the basic cycl€" that originally containgn+1
vertices, includingu=u". For a root lev = v' be them™ vertex (whose label has low order digitl) in
C’. Noting thatv' has two neighbors i€ ", it follows that the distance from' to any other vertex is at
most 1+ [im/2[0 Hence whemn= 1 the radius 0K21(2m+1) is at most ¥ /21 These bounds on dis-

tance on distance are preserved if we delete a second vertek frdimremains to consider the case where
we delete one vertax’' fromC' and one vertew" fromC".

Let the rootv =v' be a vertex ifC' that (with respect t€') is opposite tai’, and suppose that is the
not them™ vertex inC’ (i.e., prior to being deleteds’ has only one neighbor @"). Betweerv' and any
other vertexz' in C', there is a path of length at mast/20(Cm/20- 1 if mis even) strictly withirC'.
With z" the counterpart i€ " of z' in C', there is a path via' of length at most # [m/20(0m/20if mis
even) betweer' andz”. As in Theorem 21, this applies to every vertef 6f with the possible exception
of z" =u" £w", an undeleted vertex which (singéis deleted), has no counterpar@h Vertexu"” has
two neighbors<”, y" in C", at least one of whicK’' remains undeleted. this even then irC’ the two
neighbors ofu’ (one of which is the counterpatt of x") are distancém/20- 1 fromv'. Therefore, a
(shortest) path i€’ fromv' to x' followed by(x’, x") O (X", v") has length & [m/2[1 If mis odd then
x' lies at distancém/2[0- 1 or Cm/20from v'. If the former then traverse thetlm/20edges of the
(shortest) path i€ ' fromv' tox’, followed by(x', x") O (x", v"). If the latter then, as shown in Figure 18,
v' has a neighbar’ in C' that (with respect t€') is also opposite to’ (r ' is also opposite to the counter-
party of y'). Lettingr' be the root reduces to the former case. In particular, we traverse-thim /R
edges of the (shortest) pathGr fromr ' to x', followed by(x', x") O (X", v").

Finally, suppose that i6@"' we delete thenth vertexu’, (i.e., the low order digit on the label af equals
m-1 and, prior to being deleted, has two neighbors i@ "). Delete arbitrary vertex” in C", and letu’
be a vertex irC' that (with respect t€ ') is oppositev'. Betweenv', and any other vertex in C', there
is a path of length at mosin/20(Cm/20- 1 if mis even), strictly withirC'. With z" the counterpart in
C" ofz"in C’, there is a path via' of length at most ¥ [Cm/20(Cm/20if mis even) between’ andz”.
This applies to every vertex 6f", with the exception of then'™ or (m+1)%verticesu" resp.s”, whenever
one or both ofi” ands"” remain undeleted. If i€ " neitherx”, the predecessor af’, nory”, the succes-
sor ofs”, is undeleted then take as a root a vevteix C' that (with respect t€') is opposite tai’ (i.e,
the low order digit ofv’ is Cm/20or Cm/20 To reachu” from v' follow a shortest path i€’ to x’,
traverse the edge from' to its counterparx”, and trace the edga'(, u"”), a total length of * [m/20
resp.1+ /21 Suppose on the other hand that eittieory " is deleted, and without loss of generality
assume that” remains in the quorum. Refer to Figure 19. Take as a root the vémhose label has a
low order digit equal to ¥ [m/200 To reachu” resp. s’ from v' follow a shortest path i€’ to x’,
traverse the edge fromi to its counterparx”, and trace the edg&'(, u"), a total length ofm/20resp.
1+ (m+1)/20. This leaves the successortbat distance * [(m+1)/20fromVv’, with all other vertices
in the quorum at a distance fromless than * C(m+1)/20. il
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U

v (deleted, may be') O— — -
(opposite ols' that is closer ta') / N
y' (may bev')
\ - —
" C’ | U (deleted) . — — v’
(distancelim/2[- 2 o=_

from X', distance
Cm/20+ 1 fromy')

Figure 19: lllustration of the last case of the proof of Theorem 22.

Tables 11 and 12 synopsize our results for K-cube-connected cycles. With respect to radius, we see from
Table 11 that the difference between our upper and lower bounds is typically one or zero, and in no case
exceeds two. As with the case of K-cubes, we obtain lower and upper bounds on the value of
p(n, d(j-1)+2) by taking the maximum of the lower and upper bounds on the radius, as a function of the
number of vertices deleted. For example, if=3, d=2, and m=4 then
0<p(n,d(j-1)+2) - (d + Om/20) < 1;i.e, our estimate is within one of the maximum radius. Independent

of the choice of5, Theorem 6 tends to underestimate the value. df at least one case, however, the

lower bound of Theorem 6 is exap(6,2) = 2, and this bound is achieved Ky,,', shown in Figure 20.

; . Diameter, as a function of the numbei of vertices
Underlying Number i ! S :
K-%ube el deleted, O<i <f= 1+ (j-1)Ilog; (n/m)0
Kj™(n) deleted At least ‘ At most
radixj = 2, 0 1+ [m/2[] equality by Equation (22), Theorem 15
dimension 1 2+ /20
d=log,(n/m) =1 Theorem 14
ber of 1+ Om/20
Ll ol Theorem 15
vertices 2 - m+1 4
n = 2m+1 odd eorem
0 Om/ 20+ log, (n/m),equality by Equation (22)
radixj = 2, from 1to max2, (m/20) + max[2 log, (n/m)]
dimension [log, (n/m) - 1 Theorem 13
d = log, (n/m) log, (n/m) [in/20+ log, (n/m) 1+ Om/20+ logy (n/m)
number of . % Theorem 15 Theorem 13
verticesn = m2
m -1+ log, (n/m
1+ logp (n/m) Theor(gr2n(13 )
0 [m/20+ log; (n/m), equality by Equation (22)
radixj = 3, from 1to max2, Cm/20) + max[2, log; (n/m)]
dimension log; (n/m) Theorem 12
d=log (n/m) | from 1+ log (n/m) |  C/20+ log; (n/m) 1+ Ch/20+ log; (n/m)
number Ofmd to (j-1)Iog; (n/m) Theorem 15 Theorem 12
verticesn = m
. m -1+ log; (n/m
e (0 Loy e/ Theorggrf 12 )

Table 12: Diameter of quorums induced frdrdimensionaj-ary K-cube-connected cycle(?d(n).
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3.5 Quorums from K-cube-connected Edges

This section complements the preceding by giving results for graphs whose structure lies between that of
K-cubes and K-cube-connected cycles. Refer to Figure 2Bdinensional j-ary K-cube-connected edge

of order n denoted(zmd, is the result of replacing each of ir?e/ertices oind with an edge. For a basis, a
zero-dimensional K-cube-connected eﬂ'g@o is an edge connecting two vertices. The high odd#igits
of the label on a vertexin edgeh of szd are identical to thd digits on the label of vertaxof the corre-
spondingj(jd. The low order digit omi is its label in the correspondimgmo. Vertexu shares an edge with

vertexv if and only if i)u andv are neighbors in a basic edggpo, or ii) the low order digits ofi andv are

identical, and the high order digits differ in exactly one position. This definition gives rise to a develop-
ment analogous to that of the Section 3.4. For example, the respective counterparts to (15) and (16) are

n/2=jd (31)
and d-1)+1=f+1 (32)

10 00 221

Kog' = Kao!
edge count =9,
minimum size
3-connected graph
on 6 vertices;
maximum radius of quorum
minimized at 2

Figure 20: K-cube-connected edg@gajd, radixj = 3. Atj= 2 Kmd reduces to a binary K-cutb@gd"l.

On the other hand, (19) pertains intact. Except for thercase therefore, a K-cube-connected graph with
given connectivity and minimum count of edges structure cannot have as its basis a mixture of edges and
cycles. It is for this reason that we have equality in (31), and are freed from having to consider analogs to

Theorems 14, 18, and 22nif 5thenj = 2. When we delete= 0, 1, 2 vertices fronK,1(5), the radius of
the resulting quorum is at least2l resp.1 and at most,2, resp.2. The minimum diameter of a spanning
tree of a quorum d{21(5) always equals 2. Fg&= 3 we have a counterpart to Theorems 8 and 12:

Theorem 23.(Connectivity, upper bound on diameter.) ¥ 3 then between verticesandv in aszd

there arel(j-1)+1 interior-disjoint paths, none of whose length excektl®. The length of
d+1 of these paths is at mabt+ 1.

The proof of Theorem 23 is similar to those for Theorems 8 and 12; in the interest of shortening the expo-
sition we omit the details. Note that the definition aFdimensional binary K-cube-connected edge coin-

cides with that of ad+1)-dimensional binary K-cube. That i&,p%=K,9*, and without loss of

generality we may neglect K-cube-connected edges based on binary K-cubes. In particular, we are freed
from having to consider counterparts to Theorems 13, 17, 20, and 21.
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The recurrence B) pertains intact. That is, the recurrence relatiorBf@,i,2), the number of vertices at

distancei from any vertexu in szd, is identical that for K-cubesn(=1) or K-cube-connected cycles
(m= 3). By comparison to (8) or (20), the case= 2 implies slightly different boundary conditions:

B(d02) =1, B(012) =1 (33)

Forl<i<d+1, equation (21) provides the solution to the recurrédj;evith boundary condition33):

B(di,2) = B(d, ) +B,(di-1) = (-1 T+ -+ % T (34)
where%d‘ilg 0 . Atj=2 equation (34) reduces to the familB(d+1,i) = Dd +1D . Table 13 illustrates.
td j=2 j=3 ji=4
~illof1|2|3|4|5|6/|l0|12|2| 3| 4|5 |6|o|l1|2|3|4a|5]|6
0 |11 1)1 1)1
1 |[1]2]1 13| 2 14| 3
2 |13 3|1 1/5|8] 4 117]15| 9
3 |14 6] 4|1 117 )18 2 | 8 1]10| 36 | 54 | 27
4 ||1]5|10|10| 5 |1 1] 9|32| 56| 48 | 16 1]13| 66 | 162 | 189 | 81
5 |[1]6|15|20| 15| 6| 1|[1|11|50|120| 160 | 112 | 32|| 1 | 16 | 105 | 360 | 675 | 648 | 243

Table 13: NumbeB;(d,i,2) of vertices at graph distancéom any other in @-dimensionaj-ary K-cube-
connected edglézm The table may be verified or extended using (8) and (33), or (34).

Equation (34) also enables proofs of analogs to Theorems 10 and 11:

Theorem 24.Let H be any quorum induced by deletingertices fronszd, O0<i<f=d(-1). The diam-
eter ofH is at leastl+1.

Theorem 25.Let H be any quorum induced by deletingertices fronszd, 0<is<f=d(-1),j=3. The
radius ofH is at leastl+1.

Table 14 summarizes our results for K-cube-connected edges.

Number i of vertices Radius Diameter
deleted, O<i <f
f = (j-1)Ibg; (n/2) At least At most At least At most
from O 1 +log (n/2) 1 +log (n/2)
to Iog (n/2) Theorems 23 and 25 Theorems 23 and 24
if =log; (n/2) =
from 1 +log (n/2) 1 +log (n/2) then 2 1 +log (n/2) 2+ log; (n/2)
to (j-1)lbg; (n/2) Theorem 23 else 2 +log(n/2) Theorem 24 Theorem 23
Theorems 23 and 27

Table 14: Properties of quorums induced by deleting vertices from K-cube-connectet{ﬁﬂges 3.
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3.6 Chordal Graphs and Cycles of K-cubes

This section by gives a partial characterization of the chordal graphs alluded to on page 9. Our results will
be sufficient to motivate modification of these chordal graphs. The modified graphs turn out to be a cycles
of cliques, a class of graphs that we have already studied.

Refer to Figure 21A. For oddyZl =f = 3, the chordal graph§, 5, of [Hayes 1976] prescribe that each
vertex is connected taX n-1 closest vertices along a cy@g. By Theorem 4 of [Hayes 1976F;, oq is
2g-connected, and hence yields a quorum in the presence ofjdngattitioning faults. But what are the
radius and diameter of such a quorum? As illustrated by FigureGlR, can be modified in a fashion
that appears to reduce the radius of an induced quorum. For the sake of clarity we call these modified struc-
turessecant graphsForn = mif] a secant grap@(m{) is formed as follows. Divide the vertices into
classes, labeled frothto m-1. The index of a vertex’s class is the high order digit on its label. Within each
class, number the vertices frdhtof - 1. The index of a vertex within any class is the low order digit on its
label. Connect vertexto vertex [+ 1 modn]. Connect two vertices whenever their low order digit is the
same. Let us confirm that, in fact, the maximum radius of a quorum induced by deletingveptites of
C(m2g-1]) is less than that fdCypqg.1), 29, Wheref = 29-1.

12

10 21

B.
01 00

Figure 21: Chordal graph architect®g o, versus secant graph architectnf); n=9, =2, =3, m=3.

First note that the definition @& (m{) coincides with that foKmml; that is,C(m) is a clique of cycles of
lengthm. As drawn in Figure 21BZ(mif) appears to the eye as a (three) cycle of (three-vertex) cliques. No
matter how we draw a graph, however its adjacency remains unchanged. More generally, if we make
copies of al-dimensionaj-ary K- cubeK , and then connect corresponding vertices of these K-cubes into
a single cycle, we have the same result as if we had replaced every v&stelyimCy, and connected the
cycles according to the procedure on page 24. Let us record this observatlon as

Theorem 26.A cycle of m K-cubesK:? is identical to a K-cube of cycldé.mmd. In particular, a secant
graphC(mi) is a cycle oin cliquesK;.

To effectively compar€ypq.1),2q With C(mIRg-1]) we refine the result of Theorems 19 and 20 via what
amounts to an extension of Theorem 5.

Theorem 27.Form=2 and 0<i<f=j-1+ min(1, ({m-1)/20), letH be any quorum induced by deleting
i vertices fromC(mf]) = Kmml. The radius oH is at most ¥ [m/2[]

Proof. Suppose first thah = 2; that is, we have a quorum induced from a K-cube-connected edge. Since
i <j-1, there remains at least one edge that spans thgawyocliques. Pick any vertex from such an
edge. To reach any other vertetraverse at most one edge to reachh@erhaps with one of more of its

vertices deleted) to whichbelongs. By Theorem 5, whatever remainKjadffords an edge from the coun-
terpart ofu in v's K| tov. The length of the path betweerandv is at most 2= 1 + [n/2[]

Suppose on the other hand that 3; that is, we have a quorum induced from a K-cube-connected cycle.
If there is a basic cycle from which a vertex has not been deleted then pick anyestaxsuch a basic
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cycle. To reach a destination vertekraverse the basic cycle of whiaghis a member, in at mo&im/20
edges, arriving at theary cliqueK; to whichv belongs. By Theorem 5, whatever remain&;oéffords an

edge that joins the counterpartwin v's K tov. The path between andv has length at most [m/2[]

If there is no basic cycle from which a vertex has not been deleted=tienj and every basic cycle has
exactly one vertex deleted from it. Pick any central vantFlrm such a basic cycle. If the destination ver-
texvis in a clique other than that to whiglbelongs then assume that the counterpartimthe clique of
whichu is a member has not been deleted. To rgdidverse the basic cycle of whiahs a member, in at
most[m/2[Jedges, arriving at theary cliqueK; to whichv belongs. By Theorem 5, whatever remains of

K; affords an edge that joins the counterpatt wfv's K; tov. The path betweenandv has length at most

1+ [m/20 Finally, assume thatis in a clique other than that to whiglbelongs, and that the counterpart

of vin the clique of whiclu is a member has been deleted. To redcaverse the basic cycle of whialis

a member, in at mogin/200- 1 edges arriving aw, the _neighboof v's closest counterpart to in this

cycle (that we can do this is assured since the counterpais tfie only vertex deleted from the cycle). If

in v's clique the counterpart to has not been deleted then trace the edge fromits counterpart, thence

the edge tw. If in V's clique the counterpart i@ has been deleted then, as in Theorems 21 and 22, go from
u to z, the other neighbor of the counterparvdh the basic cycle of whichiis a member, to the counter-
part ofw in V's clique, tov. The length of this path betweerandv is at most # [m/2[] which equals

1+ Om/20if mis even. Ifmis odd then there is a second central vextexu's basic cyclex is closer by

one edge tav. In this case the distance fronto any other vertex is at most-1'm/2[1 il

Theorem 28.In Cyyppg.1),2q the distance between vertex 0 and vertegquals min(d/qC L(n-i)/q0).

Proof. Let u andv be the vertices i€ypq.1),2q Whose respective labels are 0 andssume, as in
Figure 21A, that the vertices @ypqg-1),2q are labeled clockwise in ascending order. Any shortest path
betweenu andv is either strictly clockwise or strictly counterclockwise. Therefore, any minimum length
path fromu to v is a minimal length path, in the sense describel@bijabas, 1978]p. xvi. Fromu tov let

P be a path of clockwise lengtror counterclockwise lengthi along the perimeter &pq.1),29- In @
greedy fashion, replace a longest subpatwith a single edge. Iterating on this procedure yields shortest
clockwise and counterclockwise paths. Clockwise, we regjamges with a single edge a totallbfqOd
times, and, if # 0 modq, substitute a single edge fanod g edges. Counterclockwise, we replaaedges

with a single edge a total 6fn-i)/gdtimes, and, ih-i # 0 mod g, substitute a single edge fio+i mod q
edges.Therefore the length of the shortest path betwardv equals min(i/q C({n-i)/g0). il

The distance prescribed in Theorem 28 is maximized whkew 2 or, if n is odd, when = [h/200or
[h/20 Since may<j<, min(0/q0 [n-i) /g0 = min [ ma<i<n (0/90, maxxi<n ({n-i)/q0 ], we have

Corollary 28.1. The radius 0Cypq.1),2q = Cn,2q is LLMI(29-1)/2[Yql= [Th /2[¥q 0

Recall from the beginning of Section 3.1 that we are interested in minimizing the maximum radius of a
quorum. By Theorem 27, the radius@fm[Rg-1]), and of any quorum &&(mlRg-1]), equals X [m/2[1

To establish tha€(mR2g-1]) is preferred t&Cy o4 it therefore suffices to exhibit a quorum@fypq.-1), 2q

whose radius is greater thar- Iim/2L1 In particular, this applies in the case of zero faults, whence Corol-
lary 28.1 pertains and the quorum is it$&fipq-1), 2. Whenm=4 andq = 3, we have

(q+1)/(g-1) <m/2 (35)
Multiply (35) byg-1 and addng-1: q(1+ On/20 < gL+ m/2) < m(gq +%) - 1< m{Rg-1)/20 (36)
Multiply (36) by 1/q: 1+ On/20< IM(2g-1)/2[0q < [(Iin{2g-1)/20g0= [(Th .20/q0 (37)

Thus wherm= 4 andq 2 3 the radius o€(m[R2g-1]) is no greater than that Gfypq.1),2¢- Similar manip-

ulations reveal that (37) holds whern= 6 andqg =2, whenm= 3 andq= 2, whenm=4 andqg= 2, and
whenm =5 andg = 2. Refined estimates and substitutions establish that the lefthand side of (37) is, in fact,
strictly less than the righthand side whenewex 3 andq = 3, or whenm = 6 andq = 2. In summary:
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Corollary 28.2. Over the range 8i < f= 2q -1, the maximum radius of a quorum obtained by deléting
vertices from the secant grag(mRg-1]) = Kmml never exceeds the maximum radius of a quorum
obtained by deletingvertices from the chordal graigpq.1),2¢- In particular, whe=0 and eithem= 3

andq = 3 orm= 6 andq = 2, the radius oC(M[Rg-1]) = Kmml is strictly less than that @npqg-1),29-

In this section we have examined and contrasted chordal graphs along with secant graphs. A secant graph
is constructible whenever the number of fatilivides the total number of nodes and is, in fact, a one-
dimensional K-cube-connected cycle. From the viewpoint of minimizing the maximum radius of quorum,

a secant graph is at least as good, and generally better, than a chordal graph. We have not carried our com-
parison to the case of an even number of faults. Moreover, chordal graphs are constructible for any value of

f <n,1°while secant graphs are constructible if and onfydif’idesn. Nevertheless, our analysis provides

a basis for preferring K-cube-connected cycles to chordal graphs, and this is our recommendation.

3.7 Quorums from C-cubes

Often referred to in the literature as a "hypercube" or simply a "cubl@heded d-dimensional j-ary
C-cube (,f’ is constructed as followfd. Forj = 2: C2d is ad-dimensional binary K-cubﬁzd (equivalently,

a (d-1)-dimensional binary K-cube-connected ed}’g&d'l); forj = 4: C4d is aK22d (proof by induction);
binary cubes are characterized by Section 3.3.j Bd2: Cjo is a single unlabeled verte«S?,j1 is a cycle
(Section 3.1) opvertices, numbered circularly from 0jtd; two vertices are joined by an edge if and only
if the moduloj difference in their labels equals #Hlote that a onelimensionalj-ary C-cubeCjl is the
same as @vertex_zeredimensionalj-ary K-cube-connected cyclé]mo. In general, to construm‘j‘zjd we

i) makej copies oijd'l; ii) prependi to the label of each vertex of tith copy oijd'l; i) connect with

an edgeverticesu andv (from different copies ond'l) if and only if the the modulp difference in the

high order digits of the labels arandv equals +1, anthe low orded-1 digits are identical. Alternatively,
we can reserve digits for the label on each vertex, thus giving to rise a construction that is independent of
the order in which dimensions are populated. Figure 7 illustrates 4-ary and ternary C-cubespir82

dimensionsNote that, since a cycle on three vertices is also a three-vertex ﬂgfi'uel(3d (equivalently,

a(d-1)-dimensional ternary K-cube-connected cyé@d'l); these are characterized by Section 3.3. It suf-
fices therefore to consider dimensiahs 2 and radicep= 5, and such is the focus of this section.

2 022

C,4%= K,* vertices correspond to o
ordered pairs of integers ! | 222
in the nonnegative quadrant o

0

C43 = K32 vertices correspond to

ﬂm P \’>03 ordered triples of integers

in the nonnegative octant

200 210 220

Figure 22: Labeling and connectivity foCg-cube andC3-cube =K33 in tworesp.three dimensions.

19. K-cube-connected cycles and chordal graphs of orded having the leasesp.greatest number of edges per
vertex are the same as cyadlesp.cliques.l.e, Kjo(n) =Cp =Cyresp. Ki(n) = Chona=Kp

20. We use a "C" to preface the term for a cﬁﬂahat is based on cycles, as opposed to a clique-based (K-)cube;
with respect to the latter, the K derives$ Gection 3.7) from notation forjavertex cliquex;.
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As with K-cubes, it is useful to know salient properties of C-cubes. Some (but not all) of these properties
are listed ifZargham 1996(p. 204). Recalling that the radixs greater than four, let us establish results

pertaining to these properties. By step (i) on the preceding ©f9gmntainsj copies oijd'l; therefore the

ordernc(d, j) of de equalgmc(d-1, j). Subject to the initial condition:(0, j) = 1, verify that the unique
solution of this recurrence relation is the same as that (5) for the number of vertigesyrkacube:

nc(d,j)=j¢ (38)
By step (iii) on the preceding page, the degree of a vert@;diequals its degree iﬁjd'1 plus 2, the

number of edges that connect it to vertices with the same labels in neighboring cdp?’é’s 8ubject to
the initial condition of zero edges @}0, the degree of each vert'ﬂsxcjOI is therefore d (39)

Summing (39) over ajl% vertices counts every edge twice. Hence the nuk(er ) of edges ir(.‘,j"I is

ec(d, j) = dp® (40)

As is the case with K-cubes (as well as edges and cycles of K-cubes), C-cubeearsymmetric?
Moreover, and as illustrated by Figure 22, the verticeé?j%fare in one-to-one correspondence with
orderedd-tuples, each of whose coordinates is a nonnegative integer. This suggests that, if two vertices

u=(Ug.g, --- »Ug) andv = (Vg4, ... , Vg) are sufficiently close, their distance should be given by the L
d-1

metric (also known as thmty block or Manhattanmetric): <Uvep =Y vy (41)
k=0

This tendency is born out by thg Imoduloj" metric of (42). By analogy with Theorem 7:

Theorem 29.1f u andv are vertices ond, labeled according to steps (i) — (iii) on page 44, then

d-1
<U, Vo4 = Z min(|u, =V, j —|u—vi) (42)
K=0

Proof. Regard arbitrary verticasandv in de. SinceCjd is vertex symmetric, we can assume without loss
of generality thati = (0, ... ,0) = 0. By step (iii) on page 44, we must traverse at leastwpipy,) edges

along thei™ axis. Thus the distance frobnto v is at least (42). Further, and again by the construction on
page 44, this bound is achieved by traversjnedges in the positive direction of tifbaxis (ifvi < j-vy) or

(if vi>j-vy) by traversing-vi edges in the negative direction of iHeaxis t

Equation (42) is maximized when the respective terms in the summation are maximized. That is, when
v = /20 for allk ranging between 0 ardt- 1. It immediately follows:

Corollary 29.1. The radius and diameter 6]‘j are identicallydj/ 20

Corollary 29.1 addresses the case qdawithout faults. To derive a lower bound on radius, consider the
numberBjC(d,i) of integer lattice points otihe surface of, as well as the total nunﬂqg(d,i) in, a closed

ball of L; moduloj radiusi. By Corollary 29.1 and equation (42), we know thgt(d,dTj/20) =j ¢ (43)

For the sake of visualization assume fhiatodd translate the labels (i’rjd so that the poin{( (j-1)/2, ...,
(j-1)/2) becomes the origin. By (42), any poinin the ball of interest belongs to ap lhall centered at the

new origin, as long as all of the (translated) coordinatessatisfyv, < (j-1)/2. Let us establish the vol-
ume and surface area of such a ball. If the radaggialsO then the ball contains just the origin, which is
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also on the surface in the sense that it is the number of points exact distance 0 from the center. Adopting
the latter definition:

B%(0,0) = V;%(d0) = 1 (44)

At the outset it is not clear what meaning we should accord the surface area of zero-dimensional ball with
positive radius. However, if we hold strictly to the definition used for (44) then the surface area of a zero-
dimensonal ball equals zero wheneiver0:

B0,i>0)=0 (45)
whence VjC(O, i)=1 (46)

Refer to Figure 23. Equations (44), (45), and (46) are consistent with the one-dimensional case
BjC(O, )=2 andeC(O, i) = 2i+ 1 (which could have served as boundary conditions) as well as with the
respective recurrences:

BO(d.i) =BO(A-L) + 2 k<0<t BEA-1K) = BE(A-LI) +BOA-Li-D) + BO@i-1) (47
VICD) = Vi1 + 2 Tk coeig VOE-LK) = VO(@-Li) + VE@-Li) + VOiY)  (48)

To obtain the righthand relation we have recursively applied the lefthand side to a split sum. Table 15 illus-
trates computation chC andV;©, analogous to that depicted by Tables 8, 10, and 13.

basis: d =0 . . o o 0 . o o

Figure 23: Balls in the L metric: recursive composition and enumeration of volume and surface area.

Notice that the recurrence (47) fB;C is the same as that (48)r Vjc, but boundary condition (45) for
Bjcdiffers from that (46) fok/jC. As a result, and as illustratedTiable 15,BjC is asymmetric, WhiI(!yjC is

a symmetric function ofl andj. Let us use combinatorial means to solve\/fﬁr. Again we focus on balls

centered atl = 0 in the translated coordinate system, and restrict the absolute value of each coordinate of
to a valueno greater thagj-1)/2.

Consider the 2tant comprising all strictly positive coordinates included in a ballofdiusi. The num-
berBjC+ of positive integer lattice points on the surface of this ball equals the number of solutions to

d-1
= v (49)
K=o
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v d B,“(d.i) CH)

illo| 1 2 3 4 5 6 7 0] 1 2 3 4 5 6 7
0 10 0 0 0 0 0 0 1] 1 1 1 1 1 1 1
1 1] 2 2 2 2 2 2 2 1| 3 5 7 9 11 13 15
2 1| 4 8 6 12 16 20 24 1] 5 13 25 41 61 85 113
8 1| 6 | 18| 38 66 102 146 198 1| 8 25 63 129 231 377 575
4 1| 8 32 88 192 360 608 952 1]10| 41 | 129 | 321 681 1289 2241
B 1(10| 50 | 170 | 450 | 1002 | 1970 3530 |1 | 12| 61 | 231 | 681 | 1683 | 3653 7183
6 1 (12| 72 | 292 | 912 | 2364 | 5336 | 10836|| 1 | 12 | 85 | 377 | 1289 | 3653 | 8989 | 19825
7 1| 14| 98 | 462 | 1666 | 4942 | 12642 | 28814|| 1 | 12 | 113 | 575 | 2241 | 7183 | 19825 | 48639

Table 15:Bjc andeC count the number of vertices on the surfaceredp. included in, a closed ball
encompassing integer lattice points, each of whose distance from the center is no gregfgrfraii.
The ball has integdr, radiusi, and is centered at a point whose coordinates correspond to a I@;ﬁ’el in

d
d [ee] [ee]
Equation (49) has ordinary generating function: [1%)(} = [x 3 X ] Z +k 10x “ (50)
k=0 =
By Chapter 6 ofTucker 1984] B;“*(d.i) is the coefficient oK in (50):8;"(d i) = 5 ~1H = 51~18 (51)
where the righthand side makes use of the symmetry of binomial coeffigbmtage 17). Summing over
all i yields the volume of intersection of the ball with the strictly positR/Gaﬁt:

i i
C+iq iy = ok-10 - gd-10 ok-1pg.- ®-10, 0d- ok-1Q
Vi (di) = ZDd 107 0%84-10" Y fd_10°Od 0t0d-10% Y Ha_1n (52)
= k=d+1 k=d+1
_ndo,0 d 0, « ok-1g- @+, pd+lo, < ok-1p-
0d0Y0d-10" 2 Bd_10- Od Ot0d-10" Od—10 "
k=d+2 k=d+3
_0i-30,00-30, « ok-1go Oi- ~20,01-20, g ok-10-0i-10,0i-10- 0i 0
Od 0'0d-10" 2 Bd_10 O d O'0d-10" 2 Gd_10 0 d O'0d-10~ Od O

k=i-1 k=i

The iterative simplification in (52) makes use of the recurrence relatigmage 17) for Pascal’s triangle.
Again recalling that each coordinate is restricted to a vadugreater thai-1)/2, let us establish (51) and

(52) by way of arguments which, unlike the preceding derivation, avoid generating functions and binomial
identities. ForBjC+(d,i), labeli tally marks with the integers from 1litoTag each ofl tallies, in ascending

order of tallies. Tagging théh tally with thekh tag signifies that the value of tk® coordinate equals the

number of tallies afterk(1)St tag, up to, and including, thodh tally. Note that there an implicit tag prior to

the first tally, and that this construction assures that all coordinates are positive. For the sum of the coordi-
nates to equdl we must tag théh t tally. This IeaveSB (d, i) = Dd 115 ways to distributel-1 indistin-
guishable tags amongl distinguishable tallies. Sln(kl? *(d,i) corresponds to the case where the sum of

thed coordinates is at mostwe are no longer required to tag tWetaIIy. There are%(ij Bways todistrib-
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ute thed tags among thietallies, and this is the number of positive integer verticegdidienensional ball
of L, radiusi centered at the origin.

Write VjCi(d,i) and BjCi(d,i) for the number of vertices mesp.on ad-dimensional ball of k. radiusi cen-
tered at the origin, such that no coordinate is zero. The number of ways of oddgigjng (plus or minus)
equals 9 each ordering corresponds to%tant ind-dimensional space. In consequence,

. BT*(d, i) = 2° %&:11% (53)

d-k0 1-1 Oyertices in or omd-dimen-

For anyk coordinates set to zero, we hagé* " Hresp. 2°~*0 71 O

Od-kO
sional ball of Iy radiusi centered at the origin. Since there @%E ways of setting coordinates to zero,
the volume is given by

d . d . i .

Cryy — d-k[dm i O_ kd[mio_ kd i O

Vildi) =% 2" "fumg-k0= 2 2 okTkO~ 2 2 OkTkO (54)
k=0 k=0 k=0

The righthand side of (54) explicates hovwlig(d,i) is symmetric with respect icandd. This is in accor-

dance with boundary conditions (44) and (46), recurrence (48), and Table 15, but is to be contrasted with
the asymmetric solution to (53):

(55)

n
Mo
N
e
[
~a
~=
[
e
|
n
M -
N
e
]
a
I
-
O

C, i _ d d-k@dm i-1 0O
Bi(d = %2 " O«Md-1-k0O
k=0
When the radius exceedqj-1)/2, a ball centered at the origin @l-f" (translated) no longer includes all of
the points encompassed by the analogous ball (of identicabliusi) in thed-dimensional space of points

whose coordinates are integers. Fodd, the ball of interest iﬁjd excludes those points having a coordi-
nate whose absolute value exce§ek)/2; analogous to (50), the ordinary generating function is

0 L—_lDd ® d (i=1)g

X 2 _ M +k-10 d+k od a2

T2 8720 « Y gD (56)
k=1 g=1

wherein forBjC+(d,i) we extract the coefficient of. Though somewhat more complicated, the casg¢ for
even is essentially similar. Rather than pursue this line, we focus on enumerating those points of interest:
i.e., those most distant, or most nearly distant, from any given vertqﬁ.in

Consider points at maximum distance from the origin in an (untrans{%fb,d)/herej is even. Vertex is
maximally distant from the origin if and only if each of the terms in (42) egl&al$his is possible if and
only if each coordinate of equalsj/2. Thus /2, ..., j/2) is the unique point at maximum distardj&
from the origin:

B(d.djr2) = 1 j even (57)

Again for the case gfeven, vertex is distanc€dj/2)-1 from the origin if and only if and only &-1 terms

in (42) equalj/2, and one term equa(§ 2)-1. The coordinate corresponding to the term whose value
equals (j/2)-1 has two possible value§! 2)-1 and (j/2)+1. There aral ways of choosing this term, in
which case the remainirdyl terms are determined. Thus the points at distance one less than the maximum
from the origin are those havingl coordinates equal 62 and one coordinate equal J2) + 1:
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B,“(d,[dj/2]-1) = 2d j even (58)

Suppose thgtis odd. Vertex is maximally distant from the origin if and only if each of the terms in (42)
equals(j-1)/2. Thus the points at maximum distardi¢1)/2 from the originhave coordinates of the form
((Gx2)/2, ..., (#1)/2). That is:

B%(d.d(-1)/2) = 2 j odd (59)

Let us apply the notion of opposite pairs to the case of C-culaaglv areoppositeif their distance equals
the diameter (alternatively, the radiul)j/ 2 Jof de. Verticesu andv arenearly oppositéf their distance

is dj/ 231, one less than the diameter (alternatively, the radiLGi)dof

Theorem 30.Let H be any quorum induced by deletingrertices froijd, O<is<f=2d1,j2=>5.
The diameter oH is at least(lj/ 2]

Proof. Supposg is even. By (57), any given vertexbelongs to one opposite pair. Summing ovej Qll
vertices counts every pair of opposites twice, and the total number of opposite pairs éﬂﬂjaﬂ'saéh
vertex we delete fror@jd removes at most one opposite pair. Therefore, there remains at least one opposite

pair as long as di< j (60)
which follows by noting that < 291 < 591 < j 91 syppose thatis odd. By (57), any given vertex
belongs to 9 opposite pairs. Summing over jaﬂ' vertices counts every pair of opposites twice, and the
total number of opposite pairs equa%'li d Each vertex we delete fro(i]cI removes at mostdZ)pposite

pairs. Therefore, there remains at least one opposite pair as long ad-1)2% < 291 d (61)
which reduces to (60). il

Theorem 31.LetH be any quorum induced by deletingertices froijd, O<i<sf=2d-1,j=5.Ifi=0
orj is odd then the radius bfis at leastl(j-1)/2. Fori = 1 andj is even, the radius &f is at leas{dj/2)-1.

Proof. The case= 0is covered by Corollary 29.1. Suppose thiatodd. By (59), undeleted vertexhas

at least one opposite as long as d-1< 29 (62)
which follows by remarks following (13). Suppose thateven. By (58), there is at least one vertex nearly
opposite to undeleted vertexas long as @l<2d (63)
which follows since zero is less than one. il
path length— 1 2 3 4 5 6 7 8 9 10 stage- m
000 001 | 002 | 003 | 013 | 023 | 033 | 133 | 233 | 333 = | 0| 1] 2
2
000 010 | 020 | 030 | 130 | 230 | 330 | 331 | 332 | 333 T|11]2]o0
000 100 | 200 | 300 | 301 | 302 | 303 | 313 | 323 | 333 1l 2]o0]1
000 006 | 005 | 004 | 014 | 024 | 034 | 134 | 234 | 334 || 333 permutation
matrix, cyclic
000 060 | 050 | 040 | 140 | 240 | 340 | 341 | 342 | 343 || 333 group of order 3
000 600 | 500 | 400 | 401 | 402 | 403 | 413 | 423 | 433 || 333

Table 16: lllustration of Theorem 32d 2 6 paths from the origin (0,0,0) to opposite (3,3,3) vertex in a
three-dimensional 7-ary C-cube. Swingback paths are listed in the bottom three rows.
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Theorem 32.(C-cube connectivity, upper bound on diamejters.) If v lies at distancé> 0 from vertex
u of de then betweemn andv there is a set ofinterior-disjoint paths. Leq be the number of coordi-
nates where andv are identical. i)d-g of these pathB(0) ... P(d-g-1) have length; ii) 2q of these paths
P(d-g) ... P(d+g-1) have length+2. For O<r < d-g-1, letc, " denote the value ofax (|u, =V, J —|ue—vid)

that is no larger than any set dfl-r other suchc®’s, (cf. (64)) with the ordering ranging over
0 < k< d-1. iii) Of the remainingl-q pathsP(d+q) ... P(2d-1), pathP(d+qg+r) traverses+2c,*-j edges.

Proof. By induction ord. As a basis takd = 1. SinceCJ-OI is vertex symmetric we can, without loss of gen-
erality, suppose thaty = 0 andvg = i. For property (i), trace from to v a pathP(0) of minimum length

by traversing edges along the cycle. Property (ii) holds siac® necessarily 0. For (iii), trace froato v

a pathP(1) in a direction opposite to, and interior-disjoint wifd(0); note thatcy” =j-i, and that
P(1+0-1+1) =P(1) has length-i = i+ 2j-2i-j =i +2c4"-j. The theorem holds at= 1.

Assume that the theorem holds in .0 (d-1) dimensions, and regard arbitrary vertioemdvin C9, d >1,
j =4. Suppose that = 0;i.e., the coordinates af andv differ in all d dimensions.

i) For the @ coordinate, trace a shortest pa#i(0), of length min{ug-vp| j-|ug-Vol), from u to
(Ug-1s --- » Vo). By induction, the’:jd'l prescribed by setting thd"@oordinate to/g contains a patR "(0)
from (Ug.3, ... , Vo) to v, and this path traversesmin(|uy-vo| j-|up-vol) edges. Catentating'(0) with
P"(0) gives ani-edge pathP(0) fromutov. Forh=1, ...d-1, iterate this process to synthesize (th):

at the start of tha™ iteration rotate each coordinate value by adding it tnd converting the sum to its
principal value modl. As illustrated by the righthand side of Table 16, this completes a symmetric permu-
tation matrix for the cyclic group of order[Artin 1975] (VII:1.4). At h = 2, for example, coordinates
along the path change in the order 2,d-1, 0, 1. With respect to any vertex along a path, definsttge

to be the numbem of different coordinates that have changgd; 0 implies 0< m< d-1. Entry(h, m) of

the permutation matrix equal®+m) mod d. Consider any two pathB(h;) and P(h,), for any stage

m < d-1. Since entries 0 throughof any row map to successive elements of the cyclic group of dyrder
least one of the values in columns 0 throogbf row hy (resp.h,) must not be in columns 0 throughof

row h, (resp.h,). But this means that, through staggethe set of coordinates B{h;) that areunchanged
from their original values in differ from the coordinates &¥(h,) that areunchanged from their original
values inu. Thus, the only possible intersectionR{h;) andP(h,) is at stagel-1. But this is also impossi-

ble: the f; + d-1 modd-l)th coordinate inP(hy) increments, in a monotone fashion moddid, toward

the coordinate value ofin that dimension, while the remaining paths have already attained the coordinate
value ofv in that dimension. Therefore, any path so constructed is interior-disjoint with any other.

iii) Continuing the case fog = 0, construct an additional paths by substituting swingbackat the &

stage of the preceding procedure. For stages 0 thbdghhat is, begin by tracing a pa®i(d-1+h) of
length_ max|up-vyl, j-|up-vhl) fromuto Ugy, ... ,VpEL modj, ... , Ug); if max(Juy-vyl, J-|up-vil) = j-lup-vil
then the zeroth stage path stopg.at1 modj; otherwise it stops a4, -1 modj.

This construction results in a swingback pth) passing through a neighborgfwith theh" coordinate
equal tov,t1. As illustrated by the bottom three rows of Table 16, the final step in the path traverses an

edge tov. Note that the total length &f(h) is i+j- 2|u-v| if mMin([up-Vpl, J-lun-Vhl) = Jup-vil; otherwise,
min(Jup-vil, J-lup-vhl) = j-lup-vy| and the path length isj+ 2|u,-vy|. In any case, sorting the swingback
paths by their lengths yields a setded = d-0 = d pathsP(d) ... P(2d-1), with P(d+r) traversing+2c,-j
edges, and 8r <d-g-1=d-1.

L. E. LaForge, revision 18-Oct-1999 50 Jet Propulsion Laboratory document JPL D-16485



X2000 Bus Fault Tolerance 3.7 Quorums from C-cubes

By an argument similar to that pertaining to paths without swingback, any path with swingback intersects
no other path (with or without swingback), at least up to the next-to-last edge in the path. As remarked pre-
viously, the next-to-last edge advances to a unique neighlvdi.ef one which has not been traversed by

any other path, with or without swingback). ¥ 0, that is, any two paths constructed in steps (i) or (iii)

are interior-disjoint.

Now suppose that the integeis positive. Withu as source andas destination, inductively apply the pre-
ceding procedure fay = 0 to thed-q coordinates not shared byandv. i) The de'l prescribed by the

coordinates whose values are the sameandv contains 2¢-q) pairwise interior-disjointi-v paths d-q of
which traverse edges.

ii) Construct 2| bypasgaths as follows. Ik is the index of a coordinate such that v, then traverse to
a neighbor ofi by crossing one edge in tk® dimensionj.e., by incrementing or decrementing From

this neighbor construct a path to the neighbov obtained by incrementingesp. decrementing thih
coordinate ofr. Fromu’s neighbor tos's neighbor, a single path of lengtis guaranteed by applying the
procedure foq = 0 to thed-q coordinates not shared hyandv. Traversing from/s neighbor tov com-
pletes a path of lengik 2. For each suckwe obtain two paths (one by incrementingand the other by
decrementingy,), with thek coordinate unique for every path so constructed. As a result, any bypass path

is interior-disjoint with any other bypass path, as well as with any of the)2g§aths (with or without
swingback) whose vertex labels vary only in the coordinates not sharedrulv. The bypass procedure
constructs g pathsP(d-q) ... P(d+g-1) betweeru andv; each bypass path traverse2 edges.

iif) By induction, thede'1 prescribed by thg coordinates whose values are the sameandv contains
d-q pathsP(d+q) ... P(2d-1), pairwise interior-disjoint among themselves as well as with those con-
structed in steps (i) and (ii). Pa@fd+q+r) traverses+2c,*-j edges. The theorem holds tbp 1. t

Corollary 32.1. de is 2-connected, and guarantees a quorum in the presence a-arfp@ts.

Let us use our results to formulate upper bounds on quorum diameteOatl, ... 2-1 =f faults. Since

i = 0is covered by Corollary 29.1, we focus os il< d-1. Althoughg may assume any value in the range

0 tod-1, the distances dtheorem 32ttain a maximum only b = O; i.e., for paths constructed according

to procedure (i). To see this, and without loss of generality, note that any two opposites attain the diameter
dj/20with i = 0. By contrast, the source and destination of a type (ii) bypass path must be identical in at
least one of the coordinates. Therefore, any path constructed according to procedure (ii) has length at most
(d-1)mMj/ 20+ 2 < dmj/ 20, where the latter follows singe>5. For values ki < d-1, where paths of type

(i) or type (ii) apply, it is the type (i) paths which realize the greatest nuilfijE2 [of edges.

For a number of faults in the rangd <i < 2d-1, consider the length of paths constructed by procedure
(iii), with g = 0. For O<r < d-g-1, definec, as the valug- c,*; that is,c, is the (+1)% greatest addend in
<u, v>, the distance (42pincey" < ... <¢ "< ... <cyy’, itfollows that cu=...2¢ >...2¢cqq4  (64)
Writing <P> for the length of patR, express the length of the paths constructed by step (iii) as:

<P(d+1n> = rfck + (j-c) + df Cy (65)
k=0 k=r+1
Consistent with{64), and by the remark preceding Corollary 29.1, the righthand side of (65) is at most
reg+(j-¢)+(d-r- 1) < r0/20+(j-¢) +(d-r-1)Cyq (66)
If r<d - 1 then the righthand side of (66) is bounded from above by
rg/20+(d-r-2)c, < (d-1)G/20+ §/20 (67)
If r=d - 1 then the righthand side of (66) is at mofll - 1)j/20+j-cyq < (d-1)G/20+j-1  (68)
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To complete our analysis of these paths, note that the righthand side of (67) is achieved between any verti-
cesu andyv, all d of whose coordinates differ by an absolute valu¢jb2C or j- /20 for illustration:
u=0,v=(0/20 ...,§/20. Further, the righthand side of (68) is achieved between any veautaadyv,

d-1 of whose coordinates differ by an absolute valug/&Cor j- [/ 2] and one of whose coordinates dif-

fers by #1; for illustration:.u=0, v=(0§/20 ..., /20 1). Furthermore, and by remarks following
Corollary 32.1, these pathlengths exceed those of paths constructed by procedure (ii). In summary:

Corollary 32.2. Let H be any quorum induced by deletingertices frorerd, O<i<f=2d-1,j=5,d=2.
If i <d-1 then the diameter dfl is at mostdj/20 If d<i<2d-2 then the diameter dfl is at most
(d-21)§/20+ /20 1f i = 2d - 1 then the diameter &f is at mosdlj/ 20+ [/ 20- 1.

Number i of vertices Radius Diameter
deleted,0<i<f
f=2[log;n] - 1 At least At most At least At most
0 0/2Mlbg; n
Corollary 29.1
from 1 0/2[bg; n
to[log;n]-1 i j is odd Theorem 30, Corollary 32.2
from [log; n] then %2[(-1)0og n | §/20(log; n]-1)+0/20 0/200(log; n]-1)+0/ 20
to 2flog; n] -2 else Y2[Iflog; n]-1 Corollary 32.2 [/2(bg; n Corollary 32.2
n— Thizaehs 21 [/2Mog; n)+(j/20-1 | Theorem 30 (/2 Mog; n)+j/ 2031
Y Corollary 32.2 Corollary 32.2

Table 17: Properties of quorums induced by deleting vertices from C-@}?ojas 5d=2.

3.8 Choosing a Graph Architecture

Sections 3.1 through 3.7 provide a taxonomy that includes minimum size graph architectures whose quo-
rum radii are, a technical sense, optimum. In question is how to choose from among these architectures, so
as to minimize the maximum radius of any quorum. Refer to Table 18. At either end of the range of fault
tolerance our choice is both prescribed (stars, cycles, and cliques) and optimum. Between these extremes

we may choose from regular graﬂﬁ%md whose parameters, j, andd, are independent-dimensional
j-ary K-cubesif = 1), K-cube-connected edgas € 2), and K-cube-connected cycles# 3).

For given fault toleranck what values ofi = mjl allow us to build a<mmd? Atm =1 we take all ordered
pairs(d, j) of positive integers such thdf{j-1) = f + 1. Each distinc{j, d) determines a K-cubid, with
n=j d and guorum radius at modt+ 1. Similarly, form =2 we take all ordered paifg d) such that
d{j-1) = f. Each distinc{j, d) determines a K-cube-connected ng@d, withn = Zmd and quorum radius
at mostd + 2. Form= 3 we take all ordered triplém, j, d) such thatl(j-1) = f - 1. Each distinc{m, j, d)
determines a K-cube-connected cyKl,%md, with n = m[ﬂOI and quorum radius at modt+ 1+ /20

Since minimizing the dimensiathis equivalent to maximizing the radixfor fixed value ofm we mini-

mize the quorum radius by lettingake on the greatest possible value. Figure 24 demonstrates how, for
fixed values oh andf, it is possible to have both a K-cube and a K-cube-connected cycle. Figure 25 shows
how we may also have both a K-cube-connected edge and a K-cube-connected cycle. Except for the trivial

casesz0 =K, (n=2, f=0), we know of no values of andf for which a K-cube and a K-cube-con-
nected edge may exist simultaneously.
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Figures 24 and 25 also illustrate how we have embodiezkaautabldorm, the theorems and corollaries

of Sections 3.1 through 3.7. GRAKGRaph_Architecture Rult Tolerance) calculates both graph architec-

tures and their salient properties. GRAFT is implemented as a Microsoft Excel workbook, and accompa-
nies this report as file GRAFT.xls. The main worksheet summarizes the quorum radius by taking the
maximum of our lower and upper bounds @(m,i), as the numbeir of faults ranges betweendhdf.
Underlying the summary are detailed worksheets for stars, cycles, cliques, K-cubes, K-cube-connected
cycles, K-cube-connected edges, and C-cubes. As a function of the number of vertices deleted, the under-
lying worksheets give bounds on the radius of the quorum induced; by Theorem 2, these bounds apply as
well to the radius of a tree that spans the quorum. The underlying worksheets also detail lower and upper
bounds on the quorum diameter, as well as the minimum diameter of a tree spanning the quorum. Figures
26 and 27 illustrate detailed worksheets corresponding to the summary of Figurén28), a{54, 6).

GRAFT: GRaph Architecture F_ault T olerance Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty
Cealtauikian. Vet 2 E SRS n:mde ?—fault (el Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the
! T ¥ ASEE for research and educational purposes. Based on theory developed in

graph architectu.res having minimu_m number (_)f point-to- my report: Fault Tolerant Physical Interconnection
point connections, bounded radius p and diameter. of X2000 Computational Avionics.
n = number of f = maximum e = minimum Average number of point-to-point
Input: - nodes number of number of point-to- | connections per node (number of ports
' partitioning faults | point connections: per node)
64 8 288 9.00

Graph radius p (n,f) of quorum and of tree
spanning the quorum
At least At most

Figure 24: GRAFT’s main worksheet summarizes properties of feasible graph architectures.

GRAFT: GRaph Architecture F_ault T olerance Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty
. - - ” Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the

Calculator, Version 2.0. Computes n-node f-fault tolerant ASEE for research and educational purposes. Based on theory developed in

graph architectu-res having minimu.m number (_)f point-to- my report: Fault Tolerant Physical Interconnection
point connections, bounded radius p and diameter. of X2000 Computational Avionics.
n = number of f = maximum € = minimum Average number of point-to-point
Input: - nodes number of number of point-to- | connections per node (number of ports
' partitioning faults | point connections: per node)
54 6 189 7.00

Graph radius p (n,f) of quorum and of tree
spanning the quorum
At least At most

Figure 25: GRAFT facilitates exploration of alternative fault tolerant graph architectures.

GRAFT ameliorates the burden of remembering and applying the bulk of the more than 30 theorems and
corollaries contained in this report. The designer uses GRAFT by adjusting the valuesaf. As

Figure 26 shows, if no candidate architecture is feasible then GRAFT displays instructions summarizing
relations between andf that achieve one of the candidate architectures. As a practical matter, the designer
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can often arrive at feasible values foandf by simply trying different combinations. Section 3.9 illus-
trates this process by applying it to the proposed adjacency for X2000 core avionics.

Lower bound Radi ‘
; adius of quorum . - .

K-cube-connected |/ = number o ra.dlu.s and of ?ree Diameter of Minimum diameter
p(n,i),in . quorum, as a | of spanning tree, as

edge? of | spanning quorum, . . . !

partitioning |, 9enera as a function of i | lunction of/ a function of /

faults <= f independent of
graph

TRUE architecture | At least | At most| At least | At most| At least | At most

Structure: 0 3.00 4 4 4 4 7 8

1 3.00 4 4 4 4 7 8

2 3.00 4 4 4 4 7 8

3 3.00 4 4 4 4 7 8

3-dimensional 3-ary K 4 2.00 4 5 4 5 7 10

cube-connected edge 5 2.00 4 5 4 5 7 10

6 2.00 4 5 4 5 7 10

Figure 26: Detailed worksheet corresponding to recommended architecture of Figure 25.

Lower bound ] Radius of quorum Diameter of Minimum
K-cube-connected . on radius and of tree diameter of
i = number . . quorum, as a .
Cycle? p(n,i),in spanning quorum, . -~ [|spanning tree, as
of . . function of / . .
o general as a function of / a function of /
partitioning |.
faults <= f independent of
graph
TRUE architecture | Atleast | At most |At least|At most| At least | At most
Structure: 0 3.00 5 5 5 5 9 10
1 3.00 5 5 5 4 9 10
1-dimensional 6-ary 2 3.00 2 9 = o o L
K-cube-connected = 3.00 2 g 2 i - 1z
cycle with 6 cycles £ 2.00 9 9 2 o o Lz
each containing 9' D 2.00 2 & 2 6 : =
. 6 2.00 5 6 5 9 9 12
vertices

Figure 27: Detailed worksheet corresponding to architecture of Figure 25. Feasible, but not recommended.

We conclude this section by addressing the theoretical optimality of K-cubes, K-cube-connected edges,
K-cube-connected cycles, and C-cubes. In a ratioed asymptotic sense, the K-cube constructions can deliver
the best possible valug(log n) of p(n, f); i.e., a quorum radius that, within a constant factor (perhaps
equal to one) matches the lower bounds of Theorem 6. Moreover, K-cubes and their relatives are preferred
to C-cubes for two reasons: 1) the radius of a C-cube quorum exceeds the diameter of the comparable
K-cube having identical fault tolerance; 2) theraagrelation betweepnandd such that, asc —j 00,

the ratio of the C-cube quorum radius to the general lower bound of Theorem ﬁothheerge,l.e., this

ratio must approach infinity. With respect to both criteria, that is, C-cubes are sub-optimal.

For realx, the sign of is indicated by the function signiir). If x > 0 then sighurfx) = 1; if x < 0 then
signun(x) = -1, if x = 0 then signurfx) = 0. Refer to Table 18. The signum function aIIows us to conve-
niently encapsulate the fault toIeranceinm as

f=(j-1)@ + signun(m-2) (69)
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GRAFT: GRaph Architecture F_ault Tolerance Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty
) - - >y Fellow. 10-Oct-1998, 18-0Oct-1999. Reprint rights granted to NASA and to the
Calculator, \./ersmn 240, (A:omp}“.es n-nodel fofault t‘?leram ASEE forresearch and educational purposes. Based on theory developed in
graph arch|tectuAres having minim ulm number 9‘ point-to- my report: Fault Tolerant Physical Interconnection
point connections, bounded radius p and diameter. 0f X2000 Computational Avionics.
f = maximum e = minimum Average number of point-to-point
n = number of E .
Input: - number of number of point-to- | connections per node (number of ports
' partitioning faults point connections: per node)
54 7

Graph radius p (n,f) of quorum and of tree
spanning the quorum

Adjustn or f. No feasible architecture computed.

For a star: make f=0

Foracycle: make f=1
For a clique: make n = f+1 orn = f+2
Fora K-cube: make n = [(f-1)/d-1]"d, for positive integer d
Fora K-cube-
connected make n = 2[f/d+1]~d, for positive integer d <= /2
edge:

Fora K-cube-
connected
cycle:

make n = m [(f-1)/d+1]~d, for integers d >=1,f>= 3,
and m >= 3, 0orchoose f=2 and any integern >= 5

Fora C-cube: make n = j2(f+1)/2, for integers j >= 5 and odd f>=3

Figure 28: GRAFT offers suggestions whenever it cannot construct a minimum size graph architecture.

Theorem 33.Denote byp 11, sthe lower bound on the radius of any quorum, as givefhieprem 6 If
P m,j,d=log;(n/m)+[m/20 and p*m,j,d= 1+ log;(n/m)+Cm/200 (70)
arethe minimum resp.maximum radius of quorums Kfmmd, as listed in Table 18, then

d+|M™| [[InG-2)+Ind - * d+LmJ+1 Inj+Ind
| [Zﬂ[no el Puye Pnis [d+[ D+l inj +ind] -
Inm+ dinj Pthme P Thms Inm+dinj-1.4

Proof. Explicatep™y, j . p+m,j, d» andp thm & the latter without the ceiling function. Making use of (69),

substitutej = 1 + [f - signum(m-2)] /d. For the lower bound invoke the inequalities<s-dignunmm-2),
n-1)+3<nf, and In[(f-1)/(f+ 2)] <0. For the upper bound observe that sigfmm)<1,
(-1)d+2<jd, and -1.4 <In[{- 1)/(f + 2)]. The result follows by algebraic manipulation. 0

It is interesting to note that, in the large, the fault tolerg&8of Kmmd is dominated byandd, and grows
in a fashion that is independentrof By contrast, the radius Kfmmd is dominated byn andd, and is inde-
pendent of. Our conclusions about the optimality of the quorum radiLh(sT@‘F' depend on hown, j,andd
tend to infinity. If the left and right sides ¢71) tend to some limik then, in the largegy™m j, d» p+m,j’ ds

andp thm g are within a factoh of p(mjY, (j-1)d + signump-2]), the minimum value (over all graphs)
of the maximum quorum radius. Abbreviating the latter quantity,qs, 4, we obtain the following result.

Corollary 33.1. If, for all nk = m[ﬁj >k, g andr are least upper bounds

SuchthatLgJ+1sqd anthds<rinj ,them’ ;, < (p o) d1+q+ar+r)

Under the conditions of Corollary 33.1, that is, the maximum quorum radi@,ﬁfapproaches a value

that is within a factor + q + qr + r of the minimum. Several special cases of Corollary 33.1 are of partic-
ular interest: a)d 0 o(j); b) m O o(d); ¢) both (a) and (b). In this instance the maximum radius of quorums

induced frorermOI is asymptotically within a factor a) 1as b)1+r, or c)1 ofppy j g
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Maximum of quorum radii Maximum radius
Fault tolerancef | Graph architectures p(n, i), 0si st OL?/ulg\rAtljen; t()j(IJ\ﬂ(rj]Zd References
At least At most P Thm 6
G np uniquely the set Exactly
0 of n-vertex starss, - best possible Etsle g
G n uniquely the sef Exactly
A of n-vertex cyclesC, mieH best possible Teble
G'n2includes
1-dimensional binary 1ifn=5 Table 11,
2 o EarE e else 1+ /2020 Don’'t know e 6
cycles 1+ [On/2020 discussion
Kol(n = 2m+1), on p. 40
m2 2
+ includes Definitely not Table 17,
2[log; n -1 dijirrr]iédréionaj-ar /2 0bg n [/2[(og;n) | best possible: ratio] Theorems
=2d-1, d. - y { +0/20-1 diverges too as 6, 34, 35
C-cubesGy™;j 25 n= - o Corollary 35.1
[(-Dog n] -1 G n.G-1a-1 includes N
i g d-dimensionaj-ary log; n 1+ log;n Asn - oo: within a
=(-)@d-1 Keallaak factor of 1 of best
! possible whenever
G ng-naincludes 2 ifd=1 et | & 11 and 14
(j-l)[l]_)gi» (n/2) d-dimensionaj-ary r%gu%(dgg_rwﬁ?% ,Corlollar
=(-Hd K-Cube-C%nhECted 1+log(n/2) | 2+log(n/2) | 1+q+qr+r of best 331 J
edgesKyy, j 23 possible whenever -
Gy (-ds1 includes 1+ /20 ifd=1 E‘J +1<qd and Theorem 6
1+ (-Dibg; (n/m)| d-dimensionaj-ary Ind<rinj, for least
= ()@ +1 K-cube-connected Dn/|2|] g 1+ IEm/ZD/ upper bounds, r.
cyclesKyf, m= 3 *log; (n/m) | +log; (n/m)
Gnn21 Gnn1l
/Bl o~ Exactly Table 7,
2, [ ur:/'gﬂg';’ctﬂguzzt(m' . best possible Theorem 6
n

Table 18: Radius of quorums induced by deleting vertices froartex graph architectures.

If both m andd are bounded then the only way for the number of vertices to approach infinity is for the

radixj to increase. In this case we can improve Corollary 33.1 to best possible.

Corollary 33.2.1f d, m ©(1) then lim N

+

- pm,j,d

pm,',d: p_m,',d
Pmijd

=1.

In the ratioed asymptotic sense of Corollaries 33.1 and 33.2, both the lower bounds of Theorem 6 and the
quorum radius of(mmOI are best possible. In other cases it may be that one of these bounds is best possible,

but this remains to be proved. We also stress@hat; 4/ P thm 6 @dP m, j o/ P Thm 6 @PProach one
quite slowly. The reason for this appears to be thiddantors in the expressions @f1). As computed by
GRAFT, for example, afn,f)=(12119) and (n,f)=(512 20) we have(m,j, d)=(1,112) and
(m, j, d)=(1, 8, 3); the corresponding ratios ar&23and 43.

56
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Before presenting the last two theorems of this section, let us review our terminology. Refer to the two
middle columns of Table 18, as well as to the introductory material on page 9. Byaxiraum radius

p(n, f) we mean the largest radius of any quorum induceddbyewer faults. Thus, for example, to obtain
alower bound on the maximum radius of a K-cubesp.C-cube), we take the largest of the lower bounds

on radii as listed in Table 9esp.Table 17); for arupperbound on the maximum radius of a K-cube or
C-cube quorum, we take the largest of the upper bounds on radii as listed in fiesplerable 17. Simi-

larly, introduce thenaximum diametek(n, f) as the largest diameter of any quorum inducefidnyffewer

faults. Thus, for example, to obtairlaaver bound on the maximum diameter of a K-cutms). C-cube)
qguorum, we take the largest of the lower bounds on diameter as listed in Taddp.I4ble 17); for an
upperbound on the maximum diameter of a K-cube or C-cube, we take the largest of the upper bounds on
diameter as listed in Tabler@sp.Table 17. Finally, note that ffis the worst-case fault tolerance of an
n-vertex graph architecture, then tfractional fault (worst-case) tolerands simply fsac = f/n. With

these notions in hand, we can quantify relative merit of K-cubes and C-cubes.

Theorem 34.If the worst-case fault tolerantef Kjd equals that o€, then,forj, J=5,d, D = 2:

The maximum diameteky of Kjd is less than the maximum radipg of C;°:  Ag <pc (72)

The ordemy(j,d) of Kjd is less than the ordeg (J,D) of CJD: Nk < nNg (73)
Proof. By hypothesis, and by Corollaries 9.1 and 32.1: f+1=d(-1) =2D (74)
By Table 9: Ag<sd+1 (75)

By Table 17, and by inequalities (74) and (75): ¥D(J-1)= %d(j- )(J-1) <pc (76)

For (72)it therefore suffices to show d+1<¥d(j-DJ-1) (77)

But (77) holdssincej, J=5,d, D=2, and 1+ld<2<4<j-1 (78)

Now note that, for integers> q =5, we have/q < 6/5 < 1.7 < 2 < 52 Hence 549D /q < 57" D/r and
the value of /5"4"D decreases strictly with increasing integers. In particular, since 5 <%= 25, and
sinced = 5,d > 2, we can make use (i¥4): ng = j9< 570D < 370D = 3D = (79)

Thus, (72) and (73) hold. il

Inequality (72) of Theorem 34 says that, for given fault tolerance, the maximum diameter of K-cube quo-
rums is less than than the maximum radius of C-cube quorums. Mor@t8)erstablishes that the worst-
casefractional fault tolerance of K-cubes is superior to that of C-cubes. Recalling the discussion at the
beginning of Section 3.7, Theorem 34 focuses on radices greater than 4 and dimensions greater than 1
since, forj <4 ord = 1, C-cubes are isomorphic to K-cubes or cycles. But in how many cases can the fault
tolerance of a C-cube equal that of a K-cube? That is, for what constructions is the degree of each vertex in
a K-cube equal to th&t 1 of any vertex in a C-cube? Byspection of (74)such a construction is realized

if and only the degree of every vertex of the K-cube is an even integer no less than eight. In other words,
for j >4 andd > 1, Theorem 34 applies to all C-cubes; moreover, Theorem 34 applies to a subset of K-
cubes (loosely speaking, "half" of them) that map many-to-one onto the set of C-cubes.

Despite Theorem 34’s quantitative preference for K-cubes over C-cubes, it seems plausible that, when
divided byp thm 6 the maximum radius of C-cube quorums attains a limit, akin to that expressed by Cor-
ollaries 33.1 and 33.2. That is, we still do not know whether, for some scaljrandfl, the maximum

radius of quorums induced froﬁ]OI is asymptotically within a constant factor@fy,,, 6. Alas, such scal-

ability is impossible, as the next theorem shows.

Theorem 35.As ne(j,d) = j 9 tends to infinity, the ratipc(j©, 2d-1)/p thm 6 grows without bound.

Proof. Suppose to the contrary that /p thm ¢ J ©(1). Then for som¢, d, andk corresponding to all
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nc (j,d) = k, the ratio is bounded from above by a least constarit. As with Theoren33, we employ

, lJ dind 2p¢
simplifying substitutions to consider ﬂ;lr?j'”—d < 2{ b_ —= <2 (80)

dinj

P thme

for such sufficiently largec (j,d) = k. The scaling condition — o implies that(j-1)Ih d - «. Hence,

for the upper bound to exist, the denominator on the lefthand side of (80) must approach infinity:
Inj — oo, But this means that— . Asj - o, (j-1)/ In j grows without bound; hence there can b&no

such that, for alhc (j,d) = k, (80) is satisfied. That ip¢(] d 2d) /0" Thm 6 grows without bound. il

Theorem 35 says that the bound of Theorem 6 (a relative Mdbee boundmentioned on page 15) can-

not be achieved by C-cubes, even in the sense of asymptotic ratios. fdishis same as a wholesale
assertion about the ratio of C-cube quorum radii to the optimum value of the maximunp(adijsand

we are not in a position to advance such a claim. However, for scaling trends that enable K-cubes to come
within a constant factor gi(n, f), wecanbe certain that the ratm- /p(nc, f) diverges. More precisely:

Corollary 35.1. For (j-1)d even, letj andd be the radix and dimension of the cIassKgﬂ’ such that
d 0 O(1) or, withr the least upper bound such that, fomalE j9=k, Ind<r Inj. Let{C,74")d=Dy
be the class of C-cubes corresponding to slﬁffhs, as prescribed by the discussion following
Theorem 34. Ik (j,d) =] dtends to infinity then, by equation (73) of Theoremrg4tends to infinity;
moreover, by Theorem 35, the ratig /p(n¢, f) grows without bound.

3.9 Underware for Distributed Configuration

When combined with breadth-first search, the proof of Theorem 2 provi@és+ae) algorithm for con-
structing a tree from a graph of ordeand sizee ([Chartrand and Lesniak 1986]n particular, ifu is a
central vertex of a quorutd induced by deleting up tovertices ofG, then applying this algorithm to a
central vertex oH gives a spanning treewhose distances are the same a$ifdn particular, the radius

of T equals the radius &f. To find the central vertices #f, it suffices to compute the (symmetric) all-dis-
tances matrix (use breadth-first search from every vertel innning timeO(n(n+e¢)), [Cormen, Leiser-

son, Rivest 1993]Sec. 23.2). Columpof row i in the all-distances matrix gives the distance between
vertexi and vertey. Sort the columns of each row in, say, descending order of the value of the entries

(using COUNTING-SORT this can be done in ti@én) per row,G)(n)2 overall, [Cormen, Leiserson,
Rivest 1993] Sec. 9.2). As a result, the eccentricity of vertexnow in column 1 of row. In time®(n),

find the radius of the graph by extracting the minimum value in colufdfRéscan each row of column 1;
if the distance irfi,1) equals the radius then insem the list of central vertices. To recap:

Theorem 36.For any graph of order and sizeg, we can use breadth-first search to compute, on a Turing
machine equivalent and in tin@n(n+e)), a spanning tree having minimum radius.

The root of the tre@ computed by Theorem 36 is a central vertex of bahd the quoruril thatT spans.

Were we to have a known fault-free node that could control configuration (via, S%Z; bod) then we

could make use dfheorem 36 to compute the root (and consequently, the rest of) a 1394 bus with mini-
mum radius. Unfortunately, this question begs the question of worst-case fault tolerance. In consequence,
we need to provide fatistributeddiagnosis and configuration. The attendant algorithms and implementa-
tions areunderware that is, they underlie and enable successful configuration of a 1394 bus.

21. For an alternative wasy of computing the radius, (absent proofs of correctness or running time), see Algorithm
12.4 of[Chacra et al 1979]
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Under the hypothesis that the number of faults is no greater that the worst-case maxiowman we

design individual nodes to cooperatively perform diagnosis and configuration? To solve this problem we
propose a separate algorithm for each graph architecture. For a star the vageats 0, so by assump-

tion the star configures properly as long as it meets other 1394 requirements. To shorten this exposition we
give details only in the case of cycles and one-dimensional binary K-cube-connected cycles.

For cycles, Figures 29 and 30 illustrate the action and timing of configuration algégjhgin instances
with and without faultsThe key idea is to partitioB,, into overlappingpathsPy 1, /o0andP, /o1 . With

the former spanningh/2C+ 1 successive verticeg,, Uy, ..., U on and the latter traversirig /20+ 1
verticesu /o Urh/20+ 15 ---» Ug- LEt US explaimcyce as We establish its correctness and efficiency. An

initial bus resefts eithera power-up bus reset, amode insertion or deletion resetaosoftware initiated

bus reset which is preceding by filling the port disable bits of each node with their default values (period
(T_1, To) of Figure 30,[Anderson 1998pp. 244-247, Chap. 141394 1995]Table 4-28). FOA¢ye the

default values of the port disable bits are set at lines 1 and 2, either in ROM for power-up, or by software
after power-up but prior to line 3. At line 3, and as depicted by the red and blue solid lines of Figure
29A(i), nodes simultaneously configure one or two (disjoint) bus(es) P, or If there is no bus fault

in Po, m/20then by the end of line 11 the path configures as a tree (f&gods) of Figure 30).

U
Ul u3
bus
u =u
root uO [h / 20 4
U7 Us
Ug

Jaul X X

P u ~ — u u
2 O 2 O 2
Uy Uz / Uq Uj \ Uy Uz
/ \
Uo Uh/2n= Ug ¢ Uo Uth/2n= Ug
\ /
\ /
Uy Ug uz Ug
o ~ Ug — o Ug
B. ~o-" 0 (i) (ii)

Figure 29:Distributed configuration by,cje from a cycleA. with no faults, B. with one fault.

Recalling the discussion at the beginning of Section 3, the nodRys gf, perform mutual test in order
to diagnose more completely the health of each node. As implied by lineAg,f, this diagnosis

involves all layers of protocols, including application-level exchange via tasks running on each processor.
Such high-level diagnosis is in keeping with the spirit of Bob Rasmussen’s approach of software lock and

key, though in our case théQ bus need not be involved. An advantage of high-level diagnosis is that
much more than just the physical layer of the 1394 is exercised, and the probability of fault detection is
increased. A disadvantage is that it may be difficult or impossible for software to distinguish various types
of low-level faults, and the probability of fine-grained fault isolation is decreased. However, and as Savio
Chau has pointed out, it would be both expensive and risky to modify the VERILOG or VHDL sources for
1394 bus controllers. Our recommendations are consistent with Savio’s goal of avoiding this exposure.
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Distributed Diagnosis and Configuration Algorithm Acy¢e % Configure a tree from a cycle

1) Enable all ports % Initial port disable values in ROM
2) except those betwegny 1, Up), (U /20 Ut /20+ 1] modn)

3) Initial bus reset % Bureset (not command reset)

4)  For each ofy’'s enabled ports iRy /20 % Have at most one fault;

5) If test(uj, U1y modn) fails % hence at most 2 buses are formed
6) then u; marksu i_1) modn, disables its port ta[i_1; mogn % Record results of failed test

7) u; issues a bus reset % and disable immediately

8) If  test(Uj, Ui+ 11 modn) fails % Performing a bus reset

9) then uj marksu i+ 1] modn, disables its port to ;. 1 ymegn% guarantees two leaves

10) Uj issues a bus reset

11) Propagate the marked status of each node throughout bus % Get info to leasponenby
12) ug disables its port ta;. u; disables its port tog % Switch to complementary bus
13) U pndisables its port ta /20 1) modns U[th/2 1] modn disables its port ta /o0

14) ug enables its port ta,_1. U, €nables its port tay

15) U ppenables its port ta[m o0 1) modns U th/20+ 1] modn €NAbIES its port ta /o0

16) ugandu opissue bus reset % Node insertion/ deletion

17) For each ofi’s enabled ports iR /50 o % Have at most one fault;

18) If test(Uj, Ufi.1) modn) fails % hence at most 2 buses are formed
19) then u; marksuj.1) modn, disables its port ta[i_.1;mogn % Record results of failed test

20) u; issues a bus reset % and disable immediately

21) If  test(U, Ui+ 11 modn) fails % Performing a bus reset

22) then uj marksu i+ 1] modn, disables its port to i, 1) e n% guarantees two leaves

23) Uj issues a bus reset

24) Propagate the marked status of each node throughout bus
25) If  uqis not marked by

26) thenug enables its port tay

27) If U[m/20 1) modn IS not marked byl /o0
28) and some other node is marked

29) thenu,/pnenables its port ta /o0 1) modn
30) If ugis not marked by

31) thenu; enables its port toy

32) If  umyonis not marked bW /20 17 modn
33) and some other node is marked

34) thenu|m/am 1) modn €nables its port ta ;o0
35) ugandu ,/omissue bus reset

% Get info to leashong,pf

% Have at most one fault;
% hencely, U /o if NOt faulty,
% has status of marked nodes

% Final configuration

reset bus at most once

N within (T4, T,)or(Ts, Tg)
inROM | reset reset
or initialized bus bus
by software
lines . I
1-2 line 3 line 3%
time
Ta To Ty Ty T3 Ty Ts Te T, Tg To

Figure 30: Parallel-series event timeline for distributed diagnosis and configuration algyjtun
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Figure 31: The shaded area represents feasible specifications for mutual test and diagnosis and is the
intersection the feasible region for 0% of faulty called good (solid lines) with the feasible region for at most
2% of good called faulty (dotted lines). Data obtained using DWI simuJatdforge and Korver 1997]

faulty called good good called faulty

% misdiagnosed

Figure 32: Mutual test and diagnosis with 75% of all nhodes faultyeasures the test redundancy.

By contrast to configuration, results for diagnosis are sufficiently well-established to merit direct applica-
tion to X2000. As Figures 31 and 32 suggestthbereticalbasis for mutual test is well-foundpdaForge

et al 1994][LaForge and Korver 1997]n addition,practical experiments with similar approaches sug-
gest that the coverage of high-level diagnosis is very close to IBG#échini and Buskens 1992]n
keeping with this, we assume that tests applied by good nodes are accurate.

Refer to Figure 29B(i). If the directed point-to-point tegt u;_q) fails then (lines 5 and &) disables its

port tou;_; (period(T4, T,) of Figure 30). This includes, but is not limited to, the case whesees no
response fronu;_, prior to arbitration timeout or wherg sees erroneous output (such as babbling noise)
fromu;_1. In such an instanag becomes a leaf and (line 7) resignals bus reset. The bus returns to the state
at line 4. By hypothesis, at most one node is faulty,_ {fis good theny; is faulty and we do not want

(u;, U_1) to be included in the final configuration.uf is faulty theny; is good and we still do not want

(u;, U_1) to be included in the final configuration. Hence, the correct action ig fordisable its port to

Ui.; and broadcast this action (lines 6 and 11). A similar argument establishes the correctness of the action
(lines 8 through 11) in response to the failure of the directed point-to-poirftitest. ;). Under a fault

model that, strictly speaking, is outside the one we have adopted, it is possible forudseeighbors,
sayu;_1, to disable its connection with, while the other neighbas, ; maintains an enabled connection to

u;. This is a result of mutual tests that point to a healthy connection betyaedu;, 1, but an unhealthy
connection between_; andy;. In this case the only logical possibility is tluts good except for its abil-

ity to communicate withi_;. Again, the correct action is foy to disable its port to;_;.

If one of the nodesy, ..., U /o0. 1 IS marked faulty then lines 5 through 10 give rise to two buses from
Ug, Uq, ..., Urp/op If eitherug or u,o0is marked as faulty then there is only one bus formed. In either
case, at the end of line 11 the status of the all the nodgs of, ..., U, ,o0is known by the fault-free
nodes(v, w) with lowestresp. highest index between 0 andl /2[] Eitherug is good and/ = ug or ug is
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faulty andv = u;. Eitheru 1, ,o0is good anav = U ,/200r U ,/20iS faulty andv = u /501 1. Since at most
one node is faulty, however, at least one of the overlapping ngd®su 1,57 will be included in(v, w)
(and if only one then the other overlapping node is faulty). Nogles o7 and their neighbors rewrite
their port registers to (lines 12 through 15) enable configuration (line fﬁ%pjm on the next bus reset
(period(T3, T,4) of Figure 30). To allow for the possibility of a single fault, this reset is initiated byugoth
andu /o (line 16, period T, Ts) of Figure 30). As shown in Figure 29A(ii) and 29B(ii), the mutual test,
diagnosis, and configuration %,ZD o (lines 17 though 24) proceeds asfgr /o0

The hypothesis of at most one faulty node assures that at leastRne by or P 200 (both, if there

are no faults) forms a single bus. If there are no faults then (lines 25 through 35) nodes form a tree rooted at
Ug, With leavesu 4, ,nandu o0+ 1 (Figure 29A(iii), period(T, Tg) of Figure 30). If there is a "one-

sided" fault (only one of a node’s neighbors declares it faulty) then we form a tree whose leaves are the
faulty node and the neighbor declaring it faulty. Otherwise, two neighbors of some node agree that the
node is faulty, and these neighbors become leaves of the 1394 bus. In summary:

Theorem 37.In the presence of any one faulty node, and in at most four bus reset periods (three resets
altogether) Acycle configures a tree of diameter at most from ann-vertex cycle (the only
1-tolerant architecture with minimum coumbf point-to-point connections).

Let us mention a few points concerning the implementatiok.Qfe. The 1394 specification prescribes

that 1394 topology maps are not preserved across bus resets, and so this information cannot be used
([Anderson 1998}p. 254). For this reason the results of mutual test are recorded in the memory of each
node, and survive subsequent software-initiated bus resets (note that software bus resets do not require
rebooting of the operating system on each node). Except where power is lost, however, port disable bits are
preserved across resefar{derson 1998p. 261). Implementindye (Or its analog for cliques, K-cubes,

or K-cube-connected edges or cycles) will require a careful estimate of;@adfigure 30. For example,
consider the beginning ¢T,4, Tg). The 16Tis minimum reset duration, if adhered to, represents an upper
bound on the windows of tolerance (which must account for setup and hold on drivers and receiyers) as
andu ,,opSwitch from one sub-bus to anothpkr{derson 1998p. 262).

The preceding explanation and proof applies to diagnosis and configuration of an architecture 6gsed on

where diagnosis is carried out after a bus reset. What about the case of faults which appear after bus reset,
and in the course of nominal bus operation? Under the assumption of no "one-sided faults", detection and
configuration in the presence of a single fauttan be readily carried out by periodically performing the

same point-to-point tests usedAgce. If U is a leaf in the current tree then the parent dfsconnects

itself fromu, signals a bus reset, aAg| configures the truncated tree beginning at line é.isfan inte-

rior node in the current tree then the neighborgs e@dmmand the two leaves to enable their ports to each
other, and then issue bus resé{g, configures the truncated tree beginning at line 4. Similarly, the case

of "one-sided" faults can be handled by adding tests destined two links from the testingatedieat iso-

lation of a faulty node does not depend on obtaining its cooperation, an advantage over the proposed

"back-door" scheme using thedl bus.

Let us now consider diagnosis and configurationkfg]r(n), the architecture perhaps most pertinent to

X2000. As in the case of cycles, if we have a fault-free, global means of diagnosis and configuration then
we can achieve the bounds of Table 18 using Theorem 36. We can also achieve these bounds in a distrib-

uted, parallel fashion. For positive integgr algorithm A21(4q) configures a quorum in the case
n=2m =2-2-q=12; the remaining two cases £ 2m+1 orn = 2m, m odd) are similarFor the sake of
brevity we omit psuedocode fé5(4q).

Refer to Figure 34. The key idea is to considatedpairs of nodegu, v), one from each of the two cycles
comprisingK21(4q); the low order digit on the label afequals the low order digit on the labelMpfind so
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(u, v)is an edge im(21(4q). A mated pair isavailableif at least one of its nodes is good; otherwise it is
unavailable Under the hypothesis that any instance(glf(4q) contains at most two faults, at most one
mated pair is unavailable. An instancelqﬂ(4q) maps to an instance @b as follows. Each available
mated pair irK21(4q) corresponds to a good nodeGg,; an unavailable mated pairlﬁ)zl(4q) (there is at

most one) corresponds to a faulg,. The problem of configuring an instancel@fl(4q) reduces to that
of configuring an instance @, as long as adjacent available mated pairs can be connected. This is illus-
trated by comparing Figure 29 with steps e through g of Figures 33 through 36.

To assure that adjacent available mated pairs can be interconnected, we schedule four preliminary steps.
Refer to steps a through d of Figures 33 through 37. At eachK%fe(pq) is partitioned intag disjoint

paths; the nominal length of each path (in the absence of faults) equals 4. Similar to the use of paths in
algorithmAg, e, €ach path scheduled By'(4q) forms a disjoint 1394 bus or, in the presence of faults, at
most two disjoint buses. Also as Myce, Nodes perform point-to-point tests on their neighbors. In the

event of an arbitration timeout induced by an unresponsive neighbor, a node disables the port to that neigh-
bor and signals a bus reset on the bus formed so far. Thus, each of steps a through d of Figures 33
through 37 may take two bus resets to stabilize. This is a consequence of the 1394 specifications with
respect to PARENT_NOTIFY and CHILD_NOTIFY (Chapters 13, 14[Aigderson 1998}

C. d.
\ \ / /
\@’O\\f/ | ' \ﬁ/

mated
pair | e solid node: bus root

broken line: con-
nection not used

g. node or connection
in black is uncondi-
tionally excluded
from configuration
at step shown

Figure 33:Distributed configuration of a minimum radius tréa A21(16). Compare with Figure 29A.

At the end of step ceach good node contains the status of its mate, as well at the status of the nodes con-
tained in its neighboring mated paii$ both nodes in a mated pdir, v)are good then, in steps e, f, and g,

the respective nodes enable the connedtion).Also in steps e, f, and g, eitheprv enables the connec-

tion to a nodew in its neighboring mated pair, if and only ifw)is good,; ii) the label omw is greater than

that of any other good node (there is at most one other) in the mated pair towietdngs; iii)Acycie

would schedule the corresponding node€jg to be connected. Suppose that only one nodex saya

mated pair is good. Nodeenables its connections to a ngdie a neighboring mated pair if and only if

) y is good; ii)A¢yceWwould schedule the corresponding node€jgto be connected.
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solid node: bus root

broken line: con-
nection not used

node or connection
in black is uncondi-
tionally excluded
from configuration
at step shown

Figure 34:Action of distributed configuration algorithmzl(lﬁ) in the presence of a single fault

K- X X

DTOTE % ¥ o

/g\ o~ /ﬁ\ ~5 X solid node: bus root
e f /o Yo X broken line: con-
\

nection not used
g. node or connection

A i in black is uncondi-
\ - 9O tionally excluded
o O 0 from configuration

™ - A~ - at step shown

Figure 35:Action ofA21(16) in the presence of two faults occuring in the same pair of mated.nodes

Under the preceding conditions, verify by enumerationddpicent available mated pairs can be intercon-
nected, unless we have the (local) fault pattern illustrated by Figure 37. As illustrated by ¥3gures
through36, the former cases are handledAy e as previously proved. The pattern depicted in Figure 37

amounts to adjacent faults {©yy; although not proved previouslf, e successfully configures this

instance as wellNote that in steps e and f we need not perform any point-to-point tests, but instead exe-
cute just those portions @, e which propagate node status to the "overlapping” mated pairs. Observe

also that, by ensuring that any fault occurs in a mated pair corresponding to Ligafiny path between
two good nodes in the configured tree traverses at most two times between the basic cycles. Therefore:
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Theorem 38.In the presence of any two faulty nodes, and in at most 11 bus reset p@ﬁi’(ﬂdq) config-
ures fromK21(4q) a tree of diameter at mosg21=n/2 + 1.

SRR T

solid node: bus root

broken line: con-
nection not used

) ¢ g. node or connection
in black is uncondi-
tionally excluded
from configuration
at step shown

Figure 36:Action of A21(16) in the presence of two faults occuring in separated pairs of mated nodes

- ff i‘p /"\ o/§ci x
; \
solid node: bus root

X x broken line: con-
nection not used

g. node or connection
in black is uncondi-
tionally excluded
from configuration
at step shown

Figure 37:Action of A21(16) in the presence of two faults occuring in neighboring pairs of mated.nodes

3.10 Application to X2000

We conclude our technical development by illustrating how our results for architectures and algorithms
apply in the case of sparse tolerafice 3) to node failureslf we takef = 1 then by Table 7 the unique
minimum size architecture is@,. By Table 7, the maximum diameter of a tree spanning a quor@y of
equalsn-1. Since the maximum diameter of a 1394 bus is 16, the maximum number of nodes in single
fault-tolerant architecture with fewest point-to-point interconnects equals 17. As illustrated in Figure 38,
we could as well come to this conclusion by using GRAFT, whose logic incorporates Table 7. We obtain a
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conservative estimate on the diameter of the spanning tree by doubling the upper bound on quorum radius.
Alternatively, we can examine the detailed worksheet, in this case the sheet entitled "Cycie*' 1Howve

must either resort to architectures that are not of minimum size, or we must increase the fault tolerance.
While the former is beyond the scope of this report, the latter may be reasonable, especially considering
space shuttle requirements for tolerance to two faults.

Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty
Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the
ASEE for research and educational purposes. Based on theory developed in

my report: Fault Tolerant Physical Interconnection

GRAFT: GRaph Architecture F_ault T olerance
Calculator, Version 2.0. Computes n-node f-fault tolerant
graph architectures having minimum number of point-to-

point connections, bounded radius p and diameter.

of X2000 Computational Avionics.

n = number of f = maximum € = minimum Average number of point-to-point
rIne - ud number of number of point-to- | connections per node (number of ports
PR nodes partitioning faults | point connections: per node)
18 1 18 2.00
Recommended: Cycle on 18 vertices & [ &
n = number of f = maximum € = minimum Average number of point-to-point
Input: - nodes number of number of point-to- | connections per node (number of ports
' partitioning faults | point connections: per node)
17 1 17 2.00
Recommended: Cycle on 17 vertices 8 | 8

Figure 38: GRAFT computes the maximum numbéof nodes in a minimum size single fault tolerant
architecture whose quorums are all spanned by a tree having diameter within the 1394 bus’s limit of 16.

Refer to Figure 39. Fdr= 2 GRAFT is able to constructlégl(n) for all n > 2, and furthermore tells us

that the diameter remains within our limit of 16 as long as30. GRAFT'’s upper bound on a maximum
diameter equals 16 for = 30, 29, 28, and 27, but decreases to 14=aR6. Refer to Figure 40. Fér= 3
the upper bound 16 on diameter, as computed by GRAFT, attains the limits imposed by the 1394 bus at

n =44, 40, 39, and 36. Within the range 8 < 44, GRAFT is able to find onI)Kmmd(n)’s whose dimen-
siond equals 1 or 2, and whose ragligquals 2 or 3. As mentioned in Section 3.8, the radith(sn@?(n)

may not be a monotone functionrofThis is born out at = 42, wherein GRAFT identifies i, 53 whose
guorum diameter may be as much as 18

Figure 41 illustrates the proposed architecturgCtfarlan et al 11-Jun-1998According to the diagram,

the degree of each node is either 4 or 2. By the discussion at the top of page 9, this renders the architecture
tolerant to at most one fault, and furthermore leaves either 2 or 4 ports per node unused. In a 2-Sep-1998
conversation, Carl Steiner and Don Hunter explained that the intentiomiaxinizethe number of con-

nected ports. With this clarification, the architecture of Figure 41 can be redrawmadtipeaph of Fig-

ure 42A. Let us analyze this multigraph architecture. First note that having two sets of wires (“for
redundancy") between pairs of nodes does not increase the tolerance to nodes whose failure acts to parti-
tion the bus. Evidently, the duplicate sets of wires account for the possibility of faulty ports on nodes which
otherwise function properly. However, this reasoning is contrary to our understanding of the X2000 fault
model, whereby each node is itself a fault containment region. We have been unable to identify any docu-
ment that points to a bus controller, or a portion of a bus controller, as a fault containment region

Further, Carl Steiner and Don Hunter accord negligible probability to the event of a break in the wires
between ports. In the interest of conserving both circuit area and y-axis connector pins, | recommend dis-
pensing with the duplicate 1394 bus. Moreover, by pre-designating two roots, the architectures of
Figures 41 and 42A unnecessarily reduce from 2 to 1 the tolerance to partitioning.tauit®éch of the
designated roots is faulty then we cannot form a tree that spans the quorum). | recommend not pre-desig-
nating any pair of nodes as candidates for the root of the tree to be configured. If this tact is taken, then the
number of such pre-designated roots should be no less than one plus the number of faults tolerated.

L. E. LaForge, revision 18-Oct-1999 66 Jet Propulsion Laboratory document JPL D-16485



X2000 Bus Fault Tolerance

3.10 Application to X2000

GRAFT: GRaph Architecture F_ault T olerance
Calculator, Version 2.0. Computes n-node f-fault tolerant
graph architectures having minimum number of point-to-
point connections, bounded radius p and diameter.

Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty
Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the
ASEE for research and educational purposes. Based on theory developed in

my report: Fault Tolerant Physical Interconnection
of X2000 Computational Avionics.

n = number of f = maximum e = minimum Average number of point-to-point
Input: N d number of number of point-to- | connections per node (number of ports
' nodes partitioning faults | point connections: per node)
31 2 47 3.03

Graph radius p (n,f) of quorum and of tree
spanning the quorum

At least At most

n= ber of f = maximum e = minimum Average number of point-to-point
Input: - Esgéser © number of number of point-to- | connections per node (number of ports
' partitioning faults | point connections: per node)
30 2 45 3.00

n = ber of f = maximum e = minimum Average number of point-to-point
Input: - Ezgéser ° number of number of point-to- | connections per node (number of ports
’ partitioning faults | point connections: per node)
29 2 44 3.03

n = ber of f = maximum e = minimum Average number of point-to-point
Input: - Ezgéser ° number of number of point-to- | connections per node (number of ports
’ partitioning faults | point connections: per node)
28 2 42 3.00

n = ber of f = maximum e = minimum Average number of point-to-point
Input: - Ezgéser ° number of number of point-to- | connections per node (number of ports
’ partitioning faults | point connections: per node)
27 2 41 3.04

0= ber of f = maximum e = minimum Average number of point-to-point
Input: N nu(rjn ero number of number of point-to- | connections per node (number of ports
' nodes partitioning faults | point connections: per node)
26 2 39 3.00

Figure 39: RAFT computes a maximal number 8Dnodes in a minimum size 2-fault tolerant graph
architecture whose quorums are all spanned by a tree having diameter within the 1394 bus’s limit of 16.
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3.10 Application to X2000

GRAFT: GRaph Architecture F_ault T olerance
Calculator, Version 2.0. Computes n-node f-fault tolerant
graph architectures having minimum number of point-to-
point connections, bounded radius p and diameter.

Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty
Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the
ASEE for research and educational purposes. Based on theory developed in

my report: Fault Tolerant Physical Interconnection
of X2000 Computational Avionics.

n = number of f = maximum e = minimum Average number of point-to-point
Input: N d number of number of point-to- | connections per node (number of ports
' nodes partitioning faults | point connections: per node)
45 3 90 4.00

Graph radius p (n,f) of quorum and of tree
spanning the quorum

At least At most

n= ber of f = maximum e = minimum Average number of point-to-point
Input: - Ezgéser ° number of number of point-to- | connections per node (number of ports
’ partitioning faults | point connections: per node)
44 3 88 4.00

n= ber of f = maximum e = minimum Average number of point-to-point
Input: - Esgéser © number of number of point-to- | connections per node (number of ports
' partitioning faults | point connections: per node)
42 3 84 4.00

1 = number of f = maximum e = minimum Average number of point-to-point
Input: N d number of number of point-to- | connections per node (number of ports
' nodes partitioning faults | point connections: per node)
40 3 80 4.00

n = ber of f = maximum e = minimum Average number of point-to-point
Input: - Ezgéser ° number of number of point-to- | connections per node (number of ports
’ partitioning faults | point connections: per node)
39 3 78 4.00

1 = number of f = maximum e = minimum Average number of point-to-point
Input: N d number of number of point-to- | connections per node (number of ports
' nodes partitioning faults | point connections: per node)
36 3 72 4.00

Figure 40: GRAFT computes a maximal numbeo#idodes in a minimum size 3-fault tolerant graph
architecture whose quorums are all spanned by a tree having diameter within the 1394 bus’s limit of 16.
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« Bus Monitor Capability
« Possibly used for high
speed memory upload

* SFC-1Ais Prime Flight

Computer
« 1394 Bus Manager
* 1394 Isochronous

« Each node is a stem of one bus and

3.10 Application to X2000

Stem
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1394 Bus B
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1394 1394 1394 1394 1394 1394 1394 1394 1394 1394 1394 1394
BusA BusB BusA BusB BusA BusB BusA BusB BusA BusB BusA BusB
SFG-1B ISC-1B SFC-1B EPA-1Aopcon STM-1B INST2
CDG Command Data Ground support equipment + Backup Flight Computer
EPA  ODC s Electronics & P A bl « Backup 1394 Bus Manager
pComm’s Electronics & Processor Assembly and Isochronous Resource
INST Instrument Interface Manager
ISC  IMU/Sun Sensor Controller
SFC  System Flight Computer A. Bus controller ports shown.
SFG Stellar Frame Grabber
STM Spacecraft Transpoding Modem

1394 A bus is prime with
flight computer A (SFC-1A) serving
as root and probably 1394 Bus

and Isochronous Manager

/

Connection to
Support Equipment

CDG Command Data Ground support equipment
EPA  OpComm’s Electronics & Processor Assembly
INST  Instrument Interface

IsC IMU/Sun Sensor Controller

SFC  System Flight Computer

SFG  Stellar Frame Grabber

STM  Spacecraft Transpoding Modem

1394 Bus B

1394 Bus A

additional users

1394 B bus for redundancy

B. Simplification of A.

L. E. LaForge, revision 18-Oct-1999

Figure 41: 1394 bus architecture proposed for X2(®®&inher 11-Mar-1997%]
Not shown is the "back-doorC bus([Charlan et al 11-Jun-1998Dption D).
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_ B. Point-to-
A. Duplicate point connec-
p(())(l)r;]tr;teoétri)g:]r;t tions not dupli-

cated (graph),
14 no node pre-
designated as
root

(multigraph), 10
pre-designated
roots at 02 and 12

Figure 42: Refinements of architecture of Figdite
A. As explained by Carl Steiner and Don HunterkB'(n) as recommended by this report.

Prior to this report, the most recent recommendation for X2000 bus fault tolerance was Opt[@h&r-of

lan et al 11-Jun-1998Dption D combines a "back-doo”d bus with the architecture of either Figure 41

or 42A. However, and as pointed out in Section 2, it takes only one faulty node to defeat the mégidrop |
Suppose that this faulty node happens to be one of the pre-designated roots of Figures 41 and 42A, and that
a second pre-designated root fails. In such a case we cannot form a tree that spans the quorum. Therefore,
even with a "back-door?C bus, the worst-case fault tolerance of Option D is at most one. At a cost of six
1394 ports (36 wires) and onCl connection (two wires) per node, we are substantially overpéying

single fault tolerance. The architecture that | recommend is a refinement of Option C as desfZibad in

lan et al 11-Jun-1998Assuming that the avionics package is populated by at least 18 but no more than 44
nodes, an economical solution is lhgl(n) depicted by Figure 42B. In this case we halve the number of
1394 ports and eliminate théd bus. Doing this recovers 20 input/output pins per node, and at the same
time increases the fault tolerance from 1 to 2. Alternatively, we can keep six ports per node, eliminating
only the PC. In this case, and as computed by GRAFT, we can tolerate five faults in as many as 96 nodes,
all the while staying within the 16 hop limit imposed by the 1394 bus.

Certainly, we have not considered every detail of X2000 avionics. As with any model, the applicability of
our results is properly tested as details are factored in. For example, let us review the extent to which our
analysis is consistent with considerations of pojenderson 1998]chapter 20) and flight computers.

Power is sourced to the bus througytitch slicesin the worst case, the number of dead switch slices that
can be tolerated is no greater than the number of switch slices minus the minimum number of switch slices
that can support the bus. Similarly, the number of faults tolerated is no greater than the number of flight
computers minus the minimum number of flight computers necessary to complete the mission (for first
delivery, one working flight computer). For example, if the bus can complete its mission with a single
flight computer and a single switch slice then building three flight computers and three switch slices, as
part of aKzl(n), maintains 2 fault tolerance. Dropping to (say) two switch slices or two flight computers
reduces the tolerance to 1, even though there exists a quorum in the presence of any two faulty nodes.

The caveats, of course, are that the margins at the switch slices, combined with capacitive buffering at each
node, are sufficient to accommodate the RLC transient associated with a bus power disconnect. To guard
against over and under voltage, each node's PHY layer should tie together, with breakers, all power inputs.
The basis for recovering from overvoltage was suggestgthiarlan et al 11-Jun-1998)Vith these cave-

ats, maintaining connectivity among all the working nodes (including at least one working switch slice)
suffices to maintain a working PHY layer in each of the good nodes.

In this section we have reinforced the use of GRAFT for deciding on an architecture, and applied GRAFT

to sparse fault tolerance for X2000. Having settled on an architecture, it remains to develop an algorithm
for distributed diagnosis and configuration. Section 3.9 spells out algorithms for thé cdsaadf = 2.

We leave as future work the extension of these algorithms to cliques, K-cubes, and K-cube-connected
edges and cycles. At the outset, | estimate that development of a repertoire of such algorithms would take
160 hours.
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