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Figure 1: Proposed packaging for X2000 computational avionics ([Steiner 11-Mar-1997]).
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1.  Executive Summary

In early June of 1998 Glenn Reeves asked me to analyze the fault tolerance of the proposed bus structure
for X2000 avionics. This report reflects my attendance at the 11-Jun-1998 X2000 avionics architecture
review, as well as interviews with Savio Chau, Bob Barry, Bob Rasmussen, Don Hunter, and Carl Steiner.
I have studied more than sixteen project documents, and have surveyed the related literature. Table 1 syn-
opsizes my observations, conclusions, and recommendations, and is based on the following priorities:

a. What do we want to build? That is, to what extent are requirements for bus fault tolerance

i) clear?
ii) complete?
iii) self-consistent?

b. How will we build it? That is, to what extent is the architecture for bus fault tolerance

i) clear?
ii) complete?
iii) self-consistent?

c. To what extent does the what match the how? Are requirements consistent with architecture?

d. Does the architecture make best use of fault tolerant technology?

Somewhat surprisingly, citerion (d) seems to govern most people’s thinking, with relatively less emphasis
on the operational utility of (a), (b), and (c). This is of concern since it is at best difficult to assess require-
ments or architectures that are neither well-specified nor complete. On a positive note, the requirements
and architectural specifications that are in place can be augmented to provide operational utility.

There is a wide variation in the clarity, completeness, and consistency of X2000 requirements and architec-
tural specifications for bus fault tolerance. On the plus side, almost all of the requirements that are clear are
also self-consistent. Five of the sixteen project documents that I examined contain explanatory narratives;
three of these five are project documents, and two are viewgraph presentations. The remaining documents,
all viewgraph presentations, lack explanatory narratives. Many of the gaps in requirements and architec-
tural specifications reflect a tendency to use viewgraphs in place of explanatory narratives. I frequently
found that different people interpreted the same viewgraphs quite differently. For this reason I conclude
that viewgraphs are not adequate for capturing and communicating requirements and specifications. In
part, “design-by-viewgraph” appears to be a reaction against the perceived overspecification of Cassini.
Some people justified design-by-viewgraph by pointing to the success of Mars Pathfinder, wherein cap-
ture of requirements and architecture was minimized. Another justification, spoken by almost everyone I
interviewed, is based on the perception that people have more work to do, in less time, than ever before.

Observations and conclusions Overall recommendations Details in

Tendency to overemphasize technology, under-
emphasize requirements and architecture.

Broaden and deepen existing requirements and
architectural specifications with clear, complete,
consistent operational descriptions.

(Estimate 180 hours to complete).

Tables
2, 3, 4, 5

Portions of requirements and architecture
unclear, incomplete, or inconsistent.

Viewgraphs are insufficient for capturing
requirements and specifications.

Diagnosis and configuration with software and
back-door I2C bus does not achieve physical
level fault tolerance; cost and risk greater than
with self-configuring 1394 bus alone.

Employ “underware” for mutual test, diagnosis,
and distributed configuration of 1394 buses.
Omit 50% of 1394 wires. Eliminate back door
I2C, but keep essentials of high level diagnosis.

Tables 4, 5
Section 3

Table 1: General observations, conclusions, and recommendations. X2000 will benefit more from clear, 
complete, and consistent requirements and specifications than from improvements in bus fault tolerance.
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As to criterion (c), the architecture for bus fault tolerance, such as it can be gleaned, is not entirely consis-
tent with project requirements for bus fault tolerance. The good news is that both requirements and archi-
tectural specifications for fault tolerant bus interconnection can, in a straightforward manner, be rendered
clear, complete, self-consistent, and consistent with each other. Assuming cooperation on the part of hard-
ware and software groups, I estimate that it will take about 180 hours of work to accomplish this, with
about one-third of the work devoted to requirements.

Technical aspects of this report focus on criterion (d). To diagnose and configure in the presence of faults
in computational nodes of the bus, the current approach ([Charlan et al 11-Jun-1998], Option D) combines
a software lock and key with a “back-door” I2C bus. Such an add-on approach is at odds with X2000 writ-
ten policies for built-in fault tolerance. My conclusion is that the current approach exposes the physical
interconnection to a level of risk that is not commensurate with X2000 project goals. The good news is that
the existing high-level approach can be modified to achieve robustness across the four layers of the 1394
protocol,1 without a (redundant) back-door I2C bus ([Charlan et al 11-Jun-1998], Option C). Reallocating
resources to the design and test of such “underware” would give more fault tolerance per dollar, and at the
same time save at least two I2C wires per computational node. In keeping with goals of X2000 engineers,
this underware requires no modifications to the 1394 hardware.

Refer to Figure 1. Since the switching functions of the 1394 are built into the avionics nodes themselves, a
particular concern is the tolerance of the bus to nodes whose switching functions fail. Such failures tend to
partition the bus. In this regard the point-to-point connectivity as presented at the 11-Jun-1998 core avion-
ics design review is single fault tolerant, even if a back-door I2C bus scheme works perfectly. At a cost of
six 1394 ports (36 wires) per node - we are substantially overpaying for single fault tolerance.2 This report
recommends halving the present 1394 bus wirecount (from 36 down to 18 wires per node), at the same
time doubling the tolerance to partitioning faults (up from one to two). Configuration in the presence of
partitioning faults can be modeled as a bivariate optimization problem in extremal graph theory:

What (f+1)-connected graphs with fewest edges minimize the maximum radius or diame-
ter of trees spanning the quorums induced by deleting up to f of the n original vertices?

Here n is the number of nodes and f is the number of faults we want to tolerate, in the worst case. Minimiz-
ing the maximum number of hops between nodes in the tree configured is the same as minimizing the
diameter, and essentially the same as minimizing the radius. As an absolute limit, the 1394 specification
allows at most 16 hops between nodes [P1394 1995].

The remainder of this report is organized as follows. Section 2 synopsizes findings and recommendations
with respect to project processes and procedures. Section 3 comprises the technical exposition.
Sections 3.1 through 3.8 furnish lower and upper bounds on the radius and diameter of quorums for archi-
tectures based on stars, cycles, cliques, K-cubes, and C-cubes. I show how, with the exception of C-cubes,
these structures are absolutely or asymptotically optimum. Section 3.9 illustrates how to formulate and
analyze parallel algorithms for distributed diagnosis and configuration. In the presence of both partitioning
faults and babbling nodes, these algorithms minimize the radius or diameter of a 1394 bus, without the
need for a back-door I2C bus. Section 3.10 shows how to apply the theorems, formulae, and algorithms of
Sections 3.1 through 3.9 to architectures capable of tolerating one, two, or three faults. To help the
designer I have supplemented this report with an Excel workbook. For given number of nodes n and fault
tolerance f, GRAFT (GRraph Architecture Fault Tolerance calculator) recommends an architecture with
minimum number of point-to-point connections. GRAFT also reports the radius and diameter of quorums
induced, as a function of the actual number of faults. Sections 3.8 and 3.10 describe how to use GRAFT.

Despite the technical emphasis of the bulk of this report, X2000 will benefit more from clear, complete,
and consistent requirements and specifications than from improvements in bus fault tolerance.

1. The 1394 bus prescribes four layers of protocol: physical link, transaction, and bus management ([P1394 1995],
Chapter 3). In effect, the MDS application will add at least one layer to this.
2. At six wires per port: twisted pairs A and B, plus power and ground [P1394 1995].
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2.  Findings and Recommendations

In the spirit of open communications and independent review ([Woerner, Spear, Parker 7-Aug-1998],
2.5.3; [Kemski 14-Jul-1998], 3.3.1), Tables 2 through 4 detail my findings with respect to evaluation crite-
ria (a) through (d) as listed in Section 1. Table 5 lists my specific recommendations.

I. Requirements II. References III. Points where requirements are unclear, 
incomplete, or inconsistent

A.

Significant risk list (SRL).
“ ...Identified risks and associ-
ated decisions to either accept, 

mitigate, or eliminate those 
risks will be recorded in a Sig-

nificant Risk List (SRL) ...”

Project Implementa-
tion Plan, 2.9

[Woerner, Spear, Parker 
7-Aug-1998]

SRL does not appear to exist, despite risks (in
part as described in this report). For example, it
is apparently yet undocumented that a flight
computer is required to execute the MDS soft-
ware; this represents a significant risk to mis-
sion flyings with a single flight computer. 

B.

Single point failure.
“... The FDP design shall tol-
erate single faults. The defini-

tion of a fault shall include 
hardware failures (e.g., 

devices and sensors) and soft-
ware failures (e.g., Single 

Event Upset, software bugs, 
sequence errors, and bad com-
mands). No single fault shall 
result in the loss of a mission 

critical function ...”

Project Implementa-
tion Plan, 3.8.3.1 

[Woerner, Spear, Parker 
7-Aug-1998]

Level 3 Requirements,
3-2141

[Guiar 23-Jul-1998]

Unclear what is meant by a “point”. Is this
some location within a “fault containment
region”? (See also row B of Table 3).

C.

Fault monitoring .
“... The FDP design shall pro-
vide a method for detecting 

system failure modes. The pre-
ferred method for the detec-
tion shall be supplied within 
the subsystem component 

through the use of built in self-
testing ...”

Project Implementa-
tion Plan, 3.8.3.4 

[Woerner, Spear, Parker 
7-Aug-1998]

Proposed software lock and key mechanism is
not within the 1394 physical layer subsystem;
proposed mechanism does not detect low level
bus failure modes (e.g., switches stuck closed or
faulty bus circuits). This report recommends
mutual test and diagnosis [LaForge and Korver
1997]. See also Sections 3, 3.9.

D.

Reliability .
“... The following reliability 

analyses shall utilize the meth-
odology stated in JPL D-5703 

or PEM/MAM approved 
methodologies...”

Reliability/cost now highest 
priorities for X2000.

Mission Assurance 
Plan, 3.3

[Kemski 14-Jul-1998]

Design
Approach/Priorities
[Guiar 11-Jun-1998]

References [JPL D-5703 23-Jul-1998] as con-
taining methods for analysis; it does not.
More relevant is [JPL 4-11 1-Apr-1984].

Unclear what the PEM/MAM approved meth-
odologies are, or even if they exist.

Lack of FMECA’s suggests
reliability is not a highest priority

E.

Success-critical
single failure point (SFP)
“All system SFP’s shall be 

identified ...”

Mission Assurance 
Plan, 3.3.2

[Kemski 14-Jul-1998]

Apparently no list of SFP’s exist. However, this
report serves to begin such a list

F.
FMECA’s .

“... FMECA’s shall be per-
formed and documented ...”

Mission Assurance 
Plan, 3.3.3.1

[Kemski 14-Jul-1998]

No FMECA published for avionics bus fault
tolerance; this is at odds with 3.3.1: “... All
analyses shall be maintained in a current state
and reflect the currently approved design ...”

Table 2: Findings with respect to Project Implementation Plan and Mission Assurance Plan requirements.
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With respect to Row A of Table 2, having a significant risk list (SRL) is an excellent idea. I recommend
that an SRL be composed and, even if empty, placed in the online project library. The list should be readily
locatable using the online library search engine and the keywords “SRL” or “Significant Risk List”.

Row B of Table 2 and row B of Table 3 underscore a very important point. A clear analysis of fault toler-
ance requires a clearly defined fault model. Most people I interviewed claimed to understand “single fault”
and “point of failure”. When pressed, however, most could not articulate the meaning of these phrases in
the context of X2000; those who did give definitions spoke in terms of “fault containment regions”. I rec-
ommend that the respective definitions be unambiguously fleshed out, if necessary, by an exhaustive list of
“faults, “points of failure”, and “fault containment regions”. First drafts of these lists are given by column
III of row B of Table 3, and by row C of Table 3.

I. Requirements II. References III. Points where requirements are 
unclear, incomplete, or inconsistent

A.

Fault protection built in , not on.
“ ...X2000 has a major goal of build-

ing fault protection (a.k.a. redun-
dancy management, fault tolerance, 
goal oriented commanding) INTO 

the spacecraft via its subsystem and 
subsystem components, rather than 

adding FP on top of the normal 
spacecraft functions. ...”

Level 3
Requirements

 3-2643, 3-2139
[Guiar 23-Jul-1998]

Proposed software lock and key mechanism 
is directly at variance with this policy. Cur-
rent design is on top of, not within, the 1394 
physical layer subsystem; proposed mecha-
nism does not detect low level bus failure 

modes (e.g., switches stuck closed or faulty 
bus circuits). This report recommends incor-
porating fault tolerance via underware. See 

also Sections 3, 3.9.

B.

Fault containment regions.
“... All subsystems and block redun-
dant units within subsystems shall be 

designed to be fault containment 
regions. Fault containment regions 

shall be designed such that any fault 
from the spacecraft fault set occur-
ring in a fault containment region 

shall not propagate faults or undetect-
able errors into other fault contain-

ment regions. ...”

Level 3
Requirements

 3-2147, 13-12, 13-13
[Guiar 23-Jul-1998];

Fault containment 
regions

[Guiar Jun-1998]

Unclear what is meant by a “fault contain-
ment region” and “spacecraft fault set”. Dia-

gram is unaccompanied by narrative 
explanation. According to Savio Chau, each 

slice containing a microcontroller and its 
local memory is a fault containment region; 
each flight computer (3 slices) is a fault con-

tainment region; each pair consisting of a 
peripheral slice plus its respective controller 
slice is a fault containment region; within 

any PASM module inside a PCU slice, each 
switch is a fault containment region; the 

assemblage of alternative “global memory” 
(volatile and nonvolatile, all slices together) 

is a fault containment region.

C.

Faults tolerated.
“... All permanent stuck-at faults ...”

“... Any bridging fault (such as a 
short) occurring within, but not 

between an element of a redundant 
system ...”

Level 3
Requirements

 3-2149, 3-2151
[Guiar 23-Jul-1998]

Proposed software lock and key mechanism 
is not tolerant to switches stuck closed or 

faulty bus circuits. Unclear what is meant by 
a bridging fault occurring “between an ele-
ment of a redundant system”. Is this related 

to fault containment regions?

D.

Distributed fault tolerance.
“... Use low level, behavioral/reflex-

ive fault detection and response 
where feasible... Use centralized 

(heuristic) fault detection and 
response where required ...”

Level 3
Requirements

 3-2156, 3-2157,
13-16, 13-17

[Guiar 23-Jul-1998]

[Barry 22-Jan-1998]
[Barry 26-Feb-1998]

Proposed back-door mechanism for diag-
nosing and configuring faulty nodes on the 
bus is centralized. The approach recom-
mended by this report is low-level behav-

ioral/reflexive fault detection.

Table 3: Findings with respect to Level III and fault protection policy requirements.
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As excerpted in row C of Table 2, the fault monitoring policy prescribed by the Project Implementation
Plan reiterates a longstanding maxim for testing: systems are themselves best suited to detect faults in sys-
tems of like kind. “Like kind” includes details of interfaces, signal formats, and timing. The proposed lock
and key mechanism is well-suited for detecting failures in low-level software. This mechanism is much
less well suited to detecting failures at the transistor or gate level, or at the level of Goal Achieving Mod-
ules (GAMS). To be proper, we should design physical layer mutual test and diagnosis among bus nodes.
However, in deference of the desire of project engineers not to modify bus controller hardware, I propose a
version of mutual test and diagnosis that spans all layers of the 1394. An advantage of such high-level
diagnosis is that the overall probability of fault detection is increased. A disadvantage is that the probabil-
ity of fine-grained fault isolation is decreased. Mutual test and diagnosis is a superset of built in self-test,
and dovetails well with point-to-point interconnections such as that used to support the redundancy of the
1394 bus [LaForge and Korver 1997].

I. Architectural
specifications II. References

III. Points where specifications are unclear, 
incomplete, inconsistent, or do not reflect best 

use of fault tolerant technology.

A.

Fail silent.
Software on each node 

sends out key on I2C bus; 
opens connection to bus if 
key not retrieved. If key is 

sent and retrieved then 
lower layers on node are 

likely to work.

Symmetric
Architecture

[Rasmussen 11-Jun-1998]

Begs the question by relying on faulty nodes to
dissociate themselves from I2C bus. Nodes with
SDA or SCL switch stuck closed (either due to
hardware or software) will not dissociate them-
selves; fault propagates to all other nodes. Con-
travenes policies for significant risk, single fault
tolerance, stuck-at faults, propagation of faults
(cf. rows A and B of Table 2, rows B and C of
Table 3, [Paret and Fenger 1997], Fig 3.1)

B.

Extra FET between node 
and I2C, 1394 bus.

Prevent power shorts by 
adding pass transistor 

between ground and I2C. 
Add pass transistor in 1394 

physical layer circuitry.

Bus Tiger Team

[Chau 11-Jun-1998]
[Charlan et al 11-Jun-

1998]

Unclear how pass gate is controlled. Extra pass
gates increase the chances that nodes will be dis-
sociated from the bus. Failure of FET’s in series
within any node (i.e., within some fault contain-
ment region) propagates fault across multidrop
I2C bus to all other nodes. This contravenes poli-
cies for significant risk, single fault tolerance,
stuck-at faults, propagation of faults (cf. rows A
and B of Table 2, rows B and C of Table 3, [Paret
and Fenger 1997], Fig 3.1)

C.

Diagnosis of faulty nodes.
1394 root polls

nodes through I2C, relies on 
self-diagnosis of NUT 

(“node under test”)

Backup: Upstream Con-
nection Failed

[Chau 18-Aug-1998]

Unclear how and how well this works. Depends
on 1394 root working properly. Contravenes pol-
icies for significant risk, single fault tolerance,
stuck-at faults, propagation of faults, and decen-
tralized detection (cf. rows A, B, and C of Table
2, rows B, C, and D of Table 3)

D.

Configuration of 1394.
Duplicate buses, with pre-

designated roots, leaves, and 
interior nodes

Bus Tiger Team
[Chau 11-Jun-1998]

[Charlan et al 11-Jun-
1998]

[Chau 17-Apr-1998]

This report recommends 1394 underware that
uses dynamic configuration to achieve twice as
much tolerance to partitioning faults, with half
as many wires. This meets shuttle requirements
for 2-fault tolerance (Europa orbiter), and at the
same time configures from n nodes a tree having
radius at most 1+n/4. Cf. Table 18

E. FMECA’s .
Bus Failure Modes

[Chau and Holmberg 17-
Apr-1998]

FMECA’s not yet performed. In at least 4 modes,
(1a, 1b, 1e, 14), a single fault can cause failure of
the entire avionics.

Table 4: Findings with respect to proposed architecture for bus fault tolerance.
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Rows D and F of Table 2 concern FMECA’s. I recommend that FMECA’s be carried out on all of the fail-
ure modes referenced in column II of row E of Table 4, and that the corresponding reports be posted in the
online project library. I also recommend that Section 3.3 of the Mission Assurance Plan be updated to ref-
erence a document that, in fact, contains methodologies for performing FMECA’s. I also recommend that
each project element manager draft a policy delineating, perhaps by reference, the FMECA methodology
for the respective portion of the project.

Commensurate with row E of Table 2, I recommend that a list of success-critical single failure points
(SFPs) be composed and placed in the online project library. Beginnings of such a list are given in column
III of row A of Table 2. I furthermore recommend that each of the X2000 documents listed in Section A be
placed into the online project library. It appears that eight of these documents are not yet online. More-
over, it appears that the bulk of X2000 meetings are not captured by written minutes. As a result, a great
deal of intellectual effort is lost. I therefore recommend that it be standard practice for each meeting’s
moderator to ensure that someone takes comprehensive minutes, and places these minutes in the online
project library. The benefit will be a clearer understanding of which issues are resolved, which are open,
and who is supposed to do what, when.

Rows A and D of Table 3, and all the rows of Table 4, are related to issues raised by row C of Table 2 and
discussed briefly on the preceding page. These issues may be summarized as 1) in situ decentralized diag-
nosis, at the appropriate level and 2) decentralized configuration, at the appropriate level. In lieu of a back-
door I2C bus, I recommend that (cf. Sections 3.9 and 3.10) diagnosis and configuration be implemented as
underware. The benefits of adopting such underware are substantial. Refer to Figure 1. According to Don
Hunter and Carl Steiner, about 108 of the 112 pins in y-axis connectors of the avionics slices are allocated.
This leaves an uncomfortable margin for enhancements. The approach I propose would free at least 20 pins
per node, thus giving designers a bit more breathing room. The underware I propose is an application of the
theory of diagnosis and configuration, and is described in Section 3.

Specific recommendations Findings, references

1. Compose Significant Risk List (SRL); place in online project library. Table 2, row A

2. Spell out precise meaning of “fault”,
“point of failure”, “fault containment region”.

Table 2, row B;
Table 3, rows B and C

3. Implement mutual test and diagnosis among bus nodes. Table 2, row C

4. Update Section 3.3 of Mission Assurance Plan to reference a document 
that, in fact, contains methodologies for performing FMECA’s.

Table 2, row D

5. Each project element manager draft a policy delineating, perhaps by 
reference, the FMECA methodology for the respective project element.

6. Perform FMECA’s on all failure modes referenced in
Table 4, row E, column II; post reports in online project library.

Table 2, row F
Table 4, row E

7. Compose list of success-critical single failure points (SFPs);
place in online project library. Table 2, rows A and E

8. Maintain all relevant X2000 documents in the online project library. Appendix A

9. Every X2000 meeting should be captured by minutes, which should 
then be placed in the online project library.

10. Substitute diagnosis and configuration, via 1394 underware,
for back-door I2C bus. Reduce number of ports per node.

Table 2, row C, Table 3, 
rows A and D, Table 4; Sec-

tions 3, 3.9, 3.10

Table 5: Summary of specific recommendations.
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3.  Fault Tolerance by Diagnosis and Configuration

Figure 2 synopsizes diagnosis and configuration [LaForge 1997]. Our recommendations incorporate sev-
eral variations on this theme: distributed algorithms for diagnosis [Somani and Agarwal 1987], diagnosis
interleaved with configuration [Preparata et al 1967], and degradable architectures [Koren and Pradhan
1986]. Physically, the architecture may be large or small; it may be a network of computers, or a systolic
array on a chip. For the X2000 bus we adopt a model whereby computational nodes and point-to-point
interconnections map to the vertices and edges of a graph [Hayes 1976]. Each node consists of at least one
slice; a node that is a flight computer spans three or four slices. In the case of X2000 a faulty node that par-
titions the bus is naturally modeled by deleting a vertex from the corresponding graph. Commensurate with
X2000 documentation, we focus on fault tolerance in the worst case.3 

A diagnosis architecture is an assignment of pairwise tests among n nodes, and may be modeled as a
directed graph whose vertices map as elements and whose arcs correspond to test relations. The outcome
of each test is either “pass” or “fail.” The ensemble of these outcomes is known as a syndrome. The syn-
drome serves as input to a diagnosis algorithm, purpose of which is to accurately identify the faulty ele-
ments. We assess a diagnosis algorithm in terms of its correctness and efficiency. As to diagnosis
architectures, the most prevalent figure of merit is the test redundancy; that is, the average degree of a ver-
tex in the underlying digraph.

As with diagnosis, configuration can be viewed in terms of architectures and algorithms. Often the target
architecture is constrained by shape: a d-dimensional array or torus with extents prescribed [LaForge
1998], a d-dimensional hypercube [Armstrong and Gray 1981], or a j-ary balanced tree of height d [Chen
and Upadhyaya 1993]. For example, [Hayes 1976] proposes and analyzes graph architectures whose target
architectures include one-dimensional arrays, simple cycles, and balanced trees. For X2000, by contrast,
we simply desire that all of the good nodes be connected by some spanning tree. In this case the target
architecture is known as a quorum. We may place additional requirements on the quorum, such as graph
diameter or graph radius.4 In our case the 1394 bus specification prescribes that the quorum must contain a
tree whose diameter (i.e., maximum number of network hops) is at most 16; in the interest of performance,
moreover, we seek to minimize the maximum number of network hops in the tree configured [P1394
1995]. Furthermore, we desire that all of the faulty nodes be dissociated from the quorum.

The connectivity of a graph G is the minimum number of vertices whose removal from G results in a dis-
connected graph or a lone vertex.5 To tolerate f partitioning faults, therefore, we seek architectures whose
corresponding graph is (f+1)-connected. Since our primary cost function is the number of point-to-point

Figure 2: Diagnosis and configuration for fault tolerance: architectures versus algorithms.

3. The worst-case graph model is the simplest that suits our purpose, and is to be contrasted with more general multi-
hypergraph models, or those which probabilistically treat the distribution or behavior of faulty nodes, or the success
of diagnosis or configuration [LaForge et al 1994], [LaForge 1994].
4. The diameter and radius of a graph are its maximum resp. minimum eccentricities. A vertex's eccentricity is the
maximum distance to some other vertex. The (graph) distance between two vertices is the length of the shortest path
connecting them. Depending on the graph, the diameter ranges between the radius and twice the radius ([Chartrand
and Lesniak 1986], Thm 2.4).
5. Our definition and use of vertex connectivity is to be distinguished from the edge connectivity; the latter equals the
minimum number of edges whose removal results in a disconnected graph or a lone vertex.
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interconnections, we furthermore focus our attention on (f+1)-connected graphs with minimum number of
edges.6 A lower bound on this number is readily seen by noting that the connectivity of a graph is at most
the minimum degree of a vertex in the graph – that is, the minimum number of edges impinging on any
vertex.7 In consequence, the degree of every vertex in an (f+1)-connected graph is at least f+1. If we sum
the degrees of all the vertices then we have counted every edge twice. The number of edges in any (f+1)-
connected n-vertex graph is therefore at least n(f+1)/2. For any integers n > f > 0, moreover, [Hayes
1976] achieves this bound with constructions from which we can configure a one-dimensional array. These
constructions are chordal graphs of order n and size n(f+1)/2 from which we can remove i vertices,
0 ≤ i ≤ f , and still have an n-i vertices connected together as a path Pn-i.

8 Unfortunately, the diameter of
Pn-i equals n-i-1 and is maximum over all quorums. Thus, chordal constructions that achieve a Pn-i depart

from our objective.9 Moreover, although [Hayes 1976] and [Kwan and Toida 1981] consider graph archi-
tectures from which we can configure trees, the analyses do not apply in the case of X2000 avionics.
Table 6 indexes our notation for a development that does model X2000 avionics.

3.1  Quorums from Trees, Cycles, and Cliques

Suppose that an n-vertex graph G is (f+1)-connected and, for 0 ≤ i ≤ f, denote by H an arbitrary quorum
induced by deleting i vertices of G. A graph T of order n is a tree if and only if T is connected and cycle-
free; equivalently, T is connected and has minimum size n-1 ([Chartrand and Lesniak 1986], Chapter 3).
T is said to span H if T and H have the same vertices and every edge of T is an edge of H. For our purposes
it will be more convenient to formulate the problem in terms of graph radius than in terms of diameter.4

This is largely a consequence of Theorem 1, Corollary 1.1, and Theorems 2 and 36, which free us from
having to distinguish the radius of the induced quorum H from the radius of a tree spanning H. In the case
of partitioning faults, our candidates for configuration architectures are members of the set *+

n,f,k of mini-
mum size (f+1)-connected graphs of order n whose quorums, induced by deletion of up to f vertices, have
radii at most k. For given n and f, we naturally wish to assure that k is the exact minimum, in which case we
write * n,f , perhaps with an extra subscript k. We denote the corresponding radius by ρ(n, f). Although the

general solution to this problem appears to be unknown,10 we can enumerate * n,0,k=2 , * n,1,k=n/2, and

* n,n-2,k=2 ; that is, ρ(n, 0) = 2, ρ(n, 1) = n/2, and ρ(n, n-2) = 1. For other values of f, we provide upper

and lower bounds on ρ(n, f), and give sets *+
n,f,k whose induced quorums have radii logarithmic in n.

6. Minimizing this cost is equivalent to minimizing the average degree of a vertex, and is therefore analogous to
the objective of minimum test redundancy in the case of diagnosis.
7. [Chartrand and Lesniak 1986], Theorem 5.1: vertex connectivity ≤ edge connectivity ≤ minimum degree.
8. The size e and order n of a graph are the number of edges resp. number of vertices it contains.
9. Section 3.6 establishes that the radius of chordal graph quorums exceeds that of secant graph quorums.
10. The closest body of work seems to be related to the function ϕ(n,d0,d,f), introduced by [Murty and Vijayan
1964]. Here j counts the minimum number of edges in an n-vertex graph with diameter at most d0, such that dele-
tion of any f of the vertices induces a graph of diameter at most d. Even for this relatively well-studied problem,
results are confined primarily to the cases d ≤ 4, f = 1 or d0 = 2 ([Bollabás, 1978], Chapter IV, Sections 2 and 3).
Moreover, our formulation differs in that we fix the number of edges at (f+1)n/2 , and then ask for the mini-
mum diameter or radius achievable in a tree that spans the induced quorum.

Figure 3: While a spanning tree that minimizes diameter also minimizes radius, the converse is not true.
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Refer to Figure 3. A vertex is central if its eccentricity equals the graph radius. If k is odd then a path Pk of
order k has one central vertex (at the midpoint of Pk, graph distance (k-1)/2 from either endpoint). If k is
even then Pk has two central vertices (at midpoints whose graph distance is (k-1)/2 from one end and
(k-1)/2 from the other). More generally:

Theorem 1. In any tree T having longest path Pk of length k-1, there is a unique central vertex u at the
midpoint of Pk, distance k/2 from one end of Pk, if and only if Pk is unique and k is odd, or
if there is a second maximum length path Qk. In the latter case, u lies at the intersection of all
maximum length paths of T. If Pk is unique and k is even then T has two central vertices,
each of which lies distance k/2 from an endpoint of Pk.

Proof. Suppose that a central vertex u does not lie on arbitrary path Pk of maximum length k-1. In any tree

Symbol Significance Page(s)

x ;  x Ceiling (least integer no less than x); floor (greatest integer no greater than x) 9, 9

<u,v>; <P> Graph distance between vertices u and v; length of path P 15, 51

O(g(n)); Ω(g(n)) Set of functions no greater resp. no less than c⋅g(n), for n > k, constants c, k 58

o(g(n)); ω(g(n)) Set of functions h(n) such that lim n → ∞ h/g = 0  resp. lim n → ∞ g/h = 0 55

Θ(g(n)) Intersection of O(g(n)) and Ω(g(n)) 58

Bj(d,i); Bj(d,i,m); Bj
C(d,i) Number of vertices at graph distance i from any vertex in Kj

d; in Km⋅j
d; in Cj

d 17, 32, 45

Cn; Cn,f +1;
C(m⋅f); Cj

d
n-vertex cycle; n-vertex (f+1)-regular chordal graph;
(m⋅f)-vertex secant graph; d-dimensional j-ary C-cube

12, 42,
42, 44

∆(n, f) Maximum diameter among quorums induced by f or fewer faults 57

e, eK(d,j);
eK(d,j,n); eC(d,j)

Size (number of edges) of a graph;8 of a Kj
d; of a Kj

d(n); of a Cj
d 15,

24, 45

f, ffrac Number, fraction f /n of faulty elements (deleted vertices) that can be tolerated3, 57

G Graph, often one that represents the configuration architecture 8

*+
n,f,k

Set of minimum size (f+1)-connected graphs of order n whose quorums,
induced by deletion of up to f vertices, have radii at most k

9

* n,f , * n,f,k Set *+
n,f,k that minimizes the maximum radius k 9

H ; T Quorum induced by deleting vertices from G; tree, often one that spans H 9

Kn=Kj
1; Kj

d n-vertex clique; d-dimensional j-ary K-cube 12, 15

Kj
d(n); Km⋅j

d d-dimensional j-ary K-cube-connected cycle on n resp. m⋅j d vertices 24, 28

n; nK(d,j); nC(d,j) Order (number of vertices) of a graph; of a Kj
d; of a Cj

d 3, 15, 45

ρ(n, f) Maximum radius among quorums induced by f or fewer faults 9

Pn; Sn n-vertex path; n-vertex star 10, 11

Vj
C(d,i) Number of vertices graph distance at most i from any vertex in Cj

d 45

Table 6: Notation.
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there is a unique path between any two vertices ([Chartrand and Lesniak 1986], Thm 3.4). The path Pj from
u to the its intersection with Pk has nonzero length j. The distance from u to the farthest endpoint of Pk is
therefore strictly greater than k/2 . The sum of the distances from a midpoint v of Pk to two farthest
leaves in the tree is at most k-1 (if not then Pk is not a maximum length path). Since the eccentricity of u is
strictly greater than the eccentricity of v, vertex u cannot be central. Thus any central vertex u of the tree
lies on Pk. If u lies on Pk, but is not graph distance k/2 from one end and k/2 from the other end of Pk,
moreover, then there is at least one vertex v (and another w, if k-1 is odd) whose eccentricity is less than
that of u. Therefore, the only candidates for central vertices of the tree are midpoints of Pk. If Pk is unique
and k-1 is even then the central vertex is the unique midpoint of Pk. If Pk is unique and k-1 is odd then there
are two midpoints of Pk and these are the central vertices of the tree. If there is more than one maximum
length path then any two of these paths Pk, Qk intersect at v, midpoint of both Pk and Qk (if not then Pk and
Qk are not maximum length). Since any central vertex lies on both Pk and Qk, u is the unique central vertex
and lies at the intersection of all maximum length paths. ❒

Corollary 1.1. The diameter of a tree is either twice its radius, or one less than twice its radius.

By Theorem 1, choosing a graph G whose every induced quorum has a spanning tree T with diameter at
most k is equivalent to choosing a graph whose every induced quorum has radius at most k/2. In partic-
ular, if G minimizes the diameter of T then G also minimizes the radius of T.11 As Figure 3 illustrates, the
converse is not true. However, Corollary 1.1 reveals how the converse is “almost” true: choosing a struc-
ture G whose every induced quorum H has a spanning tree with minimum radius either minimizes the
diameter, or comes within one of a minimum diameter spanning tree. In essence, that is, we do as well to
minimize radius as to minimize the diameter of a spanning tree. In terms of 1394 specifications, it suffices
to ensure that the radius of the spanning tree does not exceed 8. But why is it more convenient to formulate
the problem in terms of radius? A principal reason is the following.

Theorem 2. ([Chartrand and Lesniak 1986], Thm. 3.5; [Ore 1962], p. 102) For every vertex u of a con-
nected graph H, there exists a spanning tree T of H that is distance-preserving from u.

By controlling the structure of G, we should be able to influence and profit from the structure of H (hence
trees that span H). We devote the remainder of this section, as well as Sections 3.2 through 3.8, to charac-
terizing this structure. For the sake of completeness, we begin with G which are 1-connected; that is, graph
architectures that cannot tolerate any partitioning faults. Refer to Figure 4. An n-vertex star Sn is a tree
having n-1 leaves, all connected to a single vertex. The following theorem exemplifies perhaps the sim-
plest use of expectation in graph theory: in any set of real numbers whose arithmetic average is x, at least
one element of the set is no less than x and at least one element of the set is no greater than x.

Theorem 3. For integers n > f = 0, the star Sn is the unique (f+1)-connected unlabeled graph of order n
and minimum size n-1 having minimum radius 1 and minimum diameter 2.

Proof. For n ≤ 2 the theorem holds by inspection. For n ≥ 3, consider the set of 1-connected graphs of min-
imum size n-1: that is, the trees of order n ([Chartrand and Lesniak 1986], Chapter 3). The average degree
of any vertex in any such tree is 2 - 2/n > 1. Therefore, at least one vertex u has two neighbors v and w.
Since the path between v and w is unique ([Chartrand and Lesniak 1986], Theorem 3.4), the distance
between u and w equals two. Thus, any n-vertex tree has radius and diameter at least 1 resp. 2. By inspec-
tion, Sn matches this bound. Further, any n-vertex tree other than Sn has more than one interior vertex, and
therefore has radius and diameter strictly greater than 1 resp. 2. Hence Sn is the unique 1-connected unla-
beled graph of order n and minimum size n-1 having minimum radius 1 and minimum diameter 2. ❒

11. If not then there is a spanning tree Q whose radius is at most t/2 - 1. But by Corollary 1.1, 
diam Q ≤ 2t/2 - 2 < t/2 +  t/2 = diam T, contradicting the hypothesis that T has minimum diameter.
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Note that there is a gap between the number n-1 of edges in a tree (in particular, in Sn) and the lower bound
n(f+1)/2 = n/2 derived on page 9. It is curious that, by simply allowing one more edge, we can obtain
a 2-connected graph. Refer to Figure 5. As with 1-connected graphs having minimum radius and diameter,
the analogous unlabeled 2-connected graph, an n-vertex cycle Cn, is unique. As is the case for all f > 0,
moreover, the edge count n(f+1)/2 = n/2 of Cn matches exactly the lower bound derived on page 9. By
contrast to Sn, however, the uniqueness of Cn is due to constraints on connectivity, and not on radius or
diameter. These observations are formalized by the following.

Theorem 4. For integers n-1 > f = 1, the cycle Cn is the unique (f+1)-connected unlabeled graph of
ordern and minimum size n. Cn has (minimum) radius and diameter n/2. If u is any vertex
of Cn then the quorum Cn \ u, induced by deleting u, has radius n/2 -1 and diameter n-2.

Proof. Cn is 2-connected by inspection. Therefore, any minimum size 2-connected n-vertex graph G has
exactly n edges. The degree of every vertex of G must be exactly two, else some vertex has degree less
than two and G cannot be 2-connected.7 That is, any vertex u in G has two neighbors, say v and w. By the
results of Menger and Whitney, there are at least (exactly, in this case) two paths between u and v, and
these paths are disjoint except for their endpoints ([Chartrand and Lesniak 1986], Theorems 5.10 and
5.11). One of these paths Pu,v is just the edge (u,v). The other path Pu,w,v traverses some number i > 2 of
vertices of G, including u, w, and v. Therefore, Pu,v ∪ Pu,w,v is a cycle, and each vertex in Pu,v ∪ Pu,w,v has
degree exactly two. Suppose that some vertex z in G is not a member of the cycle Pu,v ∪ Pu,w,v. Since G is
connected, there must be a path from z to some vertex q of Pu,v ∪ Pu,w,v. Let r be the last vertex along this
path from z to q that is not a member of the cycle Pu,v ∪ Pu,w,v. The edge (q,r) is therefore not a part of the
cycle Pu,v ∪ Pu,w,v. But this means that the degree of q is at least three, a contradiction. Therefore the cycle
Pu,v ∪ Pu,w,v includes all the vertices of G. That is, G is identically Cn, the unique 2-connected unlabeled
graph of order n and minimum size n. The results for radius and diameter follow by inspection. ❒

For either minimum radius or diameter, Theorems 3 and 4 record the exact membership of the set * n,f
when f = 0 or f =1; that is, when the number f of faults tolerated is as far from n as possible. It is notewor-
thy to remark on the membership of * n,f when f is close to n. A clique, or complete graph, is a graph Kn
with every possible edge in place. A clique of order n has size n(n-1)/2; that is, each vertex has degree n-1.

Theorem 5. For integers f+1 = n-1, Kn is the unique (f+1)-connected unlabeled graph of order n and
(minimum) size n(n-1)/2. For 0 ≤ i ≤ f, if Ui is any set of i vertices of Kn then the quorum
Kn \ Ui, induced by deleting the vertices of Ui, has radius and diameter 1. 

Figure 4: The n-vertex star Sn is the unique element of * n,0 . e(n) = n-1. ρ(n,0) = 2. 

Figure 5: The n-vertex cycle Cn is the unique element of * n,1. e(n) = n. ρ(n,1) = n/2.
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Proof. The degree of each vertex in an (n-1)-connected graph of order n is at least n-1.7 Further, n-1 is the
maximum degree of any vertex in a (simple) graph of order n. Kn is the unique such unlabeled graph. The
sum n(n-1) of the degrees of the vertices counts each edge twice; hence Kn has size n(n-1)/2. It remains to
establish the connectivity, radius, and diameter. We proceed by induction on n. For a basis the theorem
holds at n = 2 by inspection. Assume the theorem holds on 2, … (n-1) vertices and consider arbitrary set Ui
of i vertices to be deleted from Kn, n > 2, 0 ≤ i ≤ f. Since the distance between any two vertices equals one,
the theorem holds whenever Ui is empty. Otherwise let u1∈Ui be the first vertex deleted from Kn. Since the
induced quorum is a Kn-1, we recursively apply the theorem with n-1, f-1, and the set Ui \ u1. ❒ 

Theorems 3, 4, and 5 establish the exact memberships, as well as the respective exact values of ρ(n, f), at
the endpoints of the range of f. Further, if we want to tolerate up to n-1 faults then we must tolerate n-2
faults. Therefore, the set * n,n-1 is identically * n,n-2. Table 7 summarizes these results. Both the radius
and diameter of an induced quorum H tend to change as we delete more vertices from G. While the radius
of H is the same as that of a minimum-radius spanning tree T of H, the diameter of H is in general less than
the diameter of T. By Corollary 1.1 and Theorem 2, the minimum diameter of a tree that spans a quorum is
at least one less than twice a lower bound on the radius of the quorum, and at most twice an upper bound
on the quorum radius. Combining this observation with Theorem 5, for example, we conclude that the
diameter of a tree spanning a quorum induced by deleting a single vertex from a cycle is between
2n/2 - 3 and  2n/2 - 2. In some cases (such as this one) we can tighten these bounds even further. The
diameters of the fourth column in Table 7, for example, are exact. In other cases we will establish bounds
on the radius and diameter of quorums, and of trees that span quorums.

Figure 6: The n-vertex clique Kn is the unique element of * n,n-2. e(n) = n. ρ(n, n-2) = 1.
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Table 7: Characteristics of quorums at either end of the range of the fault tolerance f < n, n≥ 3.
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3.2  General Lower Bound on Quorum Radius

Sections 3.3 through 3.7 characterize a taxonomy of graphs *+
n,f,k covering K-cubes, K-cube-connected

cycles, K-cube-connected edges, chordal graphs, and C-cubes. Analysis of each set in this taxonomy gives
constructive upper bounds on ρ(n, f). In each case we furnish lower bounds on the radius of induced quo-
rum. Short of expanding our taxonomy to include every possible graph, however, there remains the ques-
tion whether other constructions have quorums with smaller radii. For this reason we seek a lower bound
on the problem; i.e., one that is independent of our choice of the embedding graph.

In what follows we take the principal value of i mod j as the least nonnegative integer h such that, for some
integer q, i = qj + h. We use the equal sign to denote evaluation of the congruence to its principal value.
For example, -6≡ 16 mod 11, while 5 = 16 mod 11. In any rooted tree, we define the level of vertex as its
distance from the root; the height of the tree is its maximum level. We will also make use of the formula
for summing terms j through m of a geometric series with common ratio x ≠ 1 and constant coefficient a
([Thomas 1969], p. 623):

(1)

Theorem 6.  (General lower bound on radius). For 1< f < n-2:  ρ(n, f) ≥   

Proof. Let H be any quorum induced by deleting i vertices of G, where G is a minimum size (f+1)-con-
nected graph of order n, and 0 ≤ i ≤ f. Let T be a spanning tree of H with radius the same as that of H. Since
G is of minimum size, n-1 of the vertices of G have degree f+1; one vertex of G has degree
(f+1) + [n(f+1) mod 2]. These values bound as well the degree of any vertex in T. Let u be a central vertex
of T (by Theorem 1, there are at most two). The radius of T may be viewed as the height of T when rooted
at u. The height of any such tree is minimized when the number of children of every interior vertex is max-
imized. Therefore, the height of T is at least the height h of such a tree T ′ on n-i vertices. All but at most
two of the vertices of T ′ have at most f children. Since the root of T ′ has no parent, it may have as many as
f+1 children. Further, if n and f+1 are both odd then G contains an “extra” edge, which may add one to the
number of children spawned by some interior vertex v. Denote by j the level of v in T ′. The total number of
vertices in T ′ is maximized when T ′ is complete; that is, the number of vertices in T ′ is at most

(2)

For given value of f, expression (2) is maximized when the vertex v is at level j = 0; that is, when v is the
root of T ′. Applying formula (1), we see that the number of vertices in T ′ is at most

(3)

Since T ′ contains n-i vertices, it follows that n-i is no greater than (3). Recalling that the height (and thus
the radius) of T is at least the height h of T ′, we conclude

(4)

Verify that (4) is minimized when 1= n(f+1) mod 2. Since (4) must hold for every integer i between 0 and
f inclusive, it must in particular hold when i = 0; that is, when the righthand side is maximized with respect
to i. This gives the result of the theorem. ❒
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Though independently derived for this work, the lower bound of Theorem 6 is reminiscent of the develop-
ment of Bollabás and Harary for graphs of order n, diameter 2m, connectivity f+1, and size at most
n(f+2)/2. While the latter is quite close to the minimize size n(f+1)/2 of graphs that are (f+1)-connected,
the corresponding constructions admit induced quorums having arbitrary diameter. At first blush, there-
fore, the development of Bollabás and Harary is not directly applicable to X2000 ([Bollabás, 1978], p 182).
Theorem 6 also generalizes the bound attributed to Moore (circa 1958), that relates diameter, maximum
degree, and number of vertices, when no vertices are deleted [Sampels 1997]. This said, let us proceed to
expand our taxonomy of graphs and their induced quorums.

3.3  Quorums from K-cubes

A d-dimensional Gray-coded j-ary K-cube  Kj
d is recursively constructed as follows.12 Kj

0 is a lone vertex

labeled with the null string. For Kj
d we i) make j copies of Kj

d-1; ii) join with an edge vertices u and v (from

different copies of Kj
d-1) if and only if u and v have with identical labels; iii) prepend i to the label of each

vertex of the ith copy of Kj
d-1. Note that Kj

1 is just the clique Kj whose vertices have been labeled from 0 to
j-1. Figure 7 illustrates binary and ternary K-cubes in 3 resp. 2 dimensions.

Since our constructions for members of *+
n,f,k are based on d-dimensional j-ary K-cubes, it pays to know

their salient properties. By step (i) above, Kj
d contains j copies of Kj

d-1; therefore the order nK(d, j) of Kj
d

equals j⋅nK(d-1, j). Subject to the initial condition nK(0, j) = 1, verify that the unique solution of this

recurrence relation is nK(d, j) = j d (5)

By step (ii) above, the degree of a vertex in Kj
d equals its degree in Kj

d-1 plus j-1, the number of edges that

connect it to vertices with the same labels in the other copies of Kj
d-1. Subject to the initial condition of

zero edges in Kj
0, the degree of each vertex in Kj

d is therefore d(j-1) (6)

Summing (6) over all j d vertices counts every edge twice. Hence the total number eK(d, j) of edges in Kj
d is

eK(d, j) = ½⋅d(j-1)⋅j d (7)

Since graph distance is a theme underlying both radius and diameter, we seek to characterize the distances
among vertices in Kj

d. We abbreviate the distance between vertices u and v as <u,v>.13 The Gray-code

labeling prescribed by step (iii) above does not change the distances among vertices of Kj
d, but it does help

to elucidate the distances.

12. Unlike C-cubes (Section 3.7), K-cubes are cliqued based; with notation based on that Kj for a j-vertex clique.

Figure 7: Gray-code labeling of a three-dimensional K2-cube and a two-dimensional K3-cube.

13. Over all vertices in any connected graph, the graph distance, defined in footnote 4, forms a metric space:
i) <u,v> ≥ 0 (nonnegative definite); ii)<u,v> = <u ,v> (symmetry); iii)<u,v> = 0 if and only if u = v (identity);
iv) <u,w> ≤ <u,v> + <v,w> (triangle inequality). The latter can be used to prove that the diameter is at most twice
the radius ([Chartrand and Lesniak 1986], Chapter 2).
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Theorem 7. If u and v are vertices of Kj
d, Gray-code labeled according to steps (i) – (iii) on page 15, then

<u, v> equals the number of digits where the respective labels for u and v are different.

Proof. By induction on d. For a basis, the theorem holds at d = 0 by inspection. Assume that the theorem
holds in 0, … (d-1) dimensions, and regard arbitrary vertices u and v in Kj

d. By steps (i) and (ii) on

page 15, u and v are contained in copies K ′ and K ″ of Kj
d-1. If K ′ ≠ K ″ then, by step (iii), the labels of

u = u ′ and v = v ″ differ in the high order digit. Let u ″ be the vertex in K ″ having the same label as u ′,
except for the high order digit. By induction, there is a shortest path P ″ from u ″ to v ″, strictly contained in
K ″, whose length equals the number of digits where the respective labels for u ″ and v ″ are different. By
steps (ii) and (iii) on page 15, u ′ adjoins u ″. Therefore, there is a path P ″ + (u ′, u ″) from u ′ to v ″ whose
length equals the number of digits where the respective labels for u ′ and v ″ are different. Suppose that
some other path Q between u ′ and v ″ has length strictly less than that of P ″ + (u ′, u ″). Traversing Q from
u ′ to v ″, there is a vertex w ′ where Q first leaves K ′ and a vertex z″ where Q last enters K ″. By induction,
the length of the portion of Q from u ′ to w ′ is at least the number of digits where the labels of u ′ to w ′ dif-
fer. Similarly, the length of the portion of Q from z″ to v ″ is at least the number of digits where the labels
of z″ to v ″ differ. Moreover, the portion of Q from w ′ to z″ is at least one edge long. If the labels on u ′
and v ″ differ in the hth digit then, as we traverse from u ′ to v ″ along Q, the value of digit h changes at least
once. If the value of the hth digit changes more than once then Q is strictly longer than P ″ + (u ′, u ″). Thus,
as we traverse from u ′ to v ″ along Q, the digits where the labels on u ′ and v ″ are different change only
once. But this means that Q is at least as long as P ″ + (u ′, u ″), contradicting the assumption that Q is
shorter than P ″ + (u ′, u ″). When u = u ′ and v = v″ are contained in different copies K ′ resp. K ″ of Kj

d-1,

therefore, <u ′, v ″> equals the number of digits where the respective labels for u ′ and v ″ are different, and
P ″ + (u ′, u ″) is one such shortest path.

If K ′ = K ″ then, by induction, there exists a path P ′, strictly contained in K ′, whose length is equal to the
number of digits where the respective labels are different; furthermore, P ′ is a shortest path from u = u ′ to
v = v ′ that is strictly contained in K ′. If there is path Q between u ′ and v ′ whose length strictly less than
that of P ′, then Q must necessarily exit and re-enter K ′. Traversing Q from u ′ to v ′, there is a vertex w ′
where Q first leaves K ′ and a vertex z ′ where Q last enters K ′. By induction, the length of the portion of Q

from u ′ to w ′ is at least the number of digits where the labels of u ′ to w ′ differ. Similarly, the length of the
portion of Q from z ′ to v ′ is at least the number of digits where the labels of z ′ to v ′ differ. Moreover, the
portion of Q from w ′ to z ′ is at least two edges long. If the labels on u ′ and v ′ differ in the hth digit then, as
we traverse from u ′ to v ′ along Q, the value of digit h changes at least once. If the value of the hth digit
changes more than once then Q is strictly longer than P ′. Thus, as we traverse from u ′ to v ′ along Q, the
digits where the labels u ′ and v ′ are different change only once. Since the portion of Q outside of K ′ is at
least two edges long, Q is strictly longer than P ′, contrary to assumption. When u = u ′ and v = v ′ are con-
tained in the same copy K ′ of Kj

d-1, therefore, <u ′, v ′> equals the number of digits where the respective

labels for u ′ and v ′ are different, and all such paths are strictly contained in K ′. ❒

Kj
d is vertex symmetric; that is, the perspective of Kj

d is the same from every vertex.14 A valid argument

about properties of Kj
d, with respect to some fixed vertex u, remains valid when u is replaced by any other

14. More precisely, a graph G is vertex-symmetric of the group A(G) of graph automorphisms of G acts transitively on
V; i.e., for any v, w ∈ V, there is a graph automorphism α ∈ A(G) such athat α(v) = w [Sampels 1997].
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vertex. For example, how many vertices lie at distance i from any given vertex u in Kj
d? The answer does

not depend on our choice of u, and so, without loss of generality, we may assume that u lies at the origin,
i.e., all d digits of its label equal 0. Geometrically, this is equivalent to asking for the number Bj(d,i) of ver-

tices on the surface of a ball in Kj
d centered at u and having integer radius i.15 To answer this question, we

invoke the structure revealed by the proof of Theorem 7. Suppose that u = u ′ is in K ′, one of j copies of
Kj

d-1 comprising Kj
d. The number of vertices distance i from u ′ equals the number of vertices in K ′ that

are distance i from u ′ plus the number of vertices in the j-1 other copies of Kj
d-1 that are distance i from u ′.

Focus on any one of these other copies K ″ ≠ K ′. By Theorem 7, any vertex v ″ in K ″ that is distance i from
u ′ can be reached by a shortest path (u ′, u ″) + P ″, where u ″ is connected to u ′ and, except for the high
order digit, is labeled the same as u ′. Further P ″ is a shortest path of length i-1, strictly in K ″, from u ″ to
v ″. Thus, in addition to the vertices in K ′ that are distance i from u ′, the surface of the ball includes the
vertices in K ″ that are distance i-1 from u ′. Since this is true for each Kj

d-1 ≠ K ′, we have the recurrence

Bj(d,i) = Bj(d-1,i) + (j-1)⋅Bj(d-1,i-1) with boundary conditions Bj(d,0) = 1, Bj(d,i>0) = 0 (8)

Refer to Table 8. When j = 2 the recurrence of (8) reduces to that for Pascal’s triangle, and we have

B2(d,i) = , the binomial coefficient “d choose i”. More generally, Theorem 7 allows us to

solve (8) by combinatorial argument [Comtet 1974]. A j-nomial coefficient whose numerator equals d! has

j factors q0!, … qj-1! in the denominator. Absent the factorial, the values of qh sum to d = ; in

consequence, only j-1 of the factors need be explicated. Such is the custom for example, with j = 2, i.e., the

binomial coefficient . For the general case, we let q0 be the

number of digits having value 0 in the label on any vertex v distance i from u. That is, q0 is the number of
digits where the label of v is the same as the label of u. For 0 < h < j, qh equals the number of digits of v
whose value equals h. Therefore, the sum of all such qh is just the number of digits where the label of v dif-

15. If j = 2 then the labels of K2
d are bit strings, and we have a special case of the L1 metric: the Hamming distance.

In 1950 Richard Hamming introduced detection and correction codes that bear his name. These codes are based on
K2

d packings of balls of given Hamming radius ([Wakerly 1990], Section 2.14).

↓ d j = 2 j = 3 j = 4

 → i 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 1 1

1 1 1 1 2 1 3

2 1 2 1 1 4 4 1 6 9

3 1 3 3 1 1 6 12 8 1 9 27 27

4 1 4 6 4 1 1 8 24 32 16 1 12 54 108 81

5 1 5 10 10 5 1 1 10 40 80 80 32 1 15 90 270 405 243

6 1 6 15 20 15 6 1 1 12 60 160 240 192 64 1 18 135 540 1215 1458 729

Table 8: Number Bj(d,i) of vertices at graph distance i from any other in a d-dimensional j-ary K-cube . The table 
may be verified or extended using any of the formulae (8) or (9), and for j= 2 reduces to Pascal’s triangle. 
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fers from the label of u. By Theorem 7, that is, i =  and, for 0 < h < j, the ordered sequence q1,

… qj-1, abbreviated as q+
i,j , determines the value q0 = d - i. Note that q+

i,j may be viewed as a vector

whose components are nonnegative integers no greater than i. Denote by Q+
i,j the set of all vectors q+

i,j .

For any vector q+
i,j the multinomial coefficient

 counts the number of vertices at distance i

from u. Over all such q+
i,j ∈ Q+

i,j , summing these multinomial coefficients gives

(9)

For example, we use (9) to verify two entries of Table 8. Q+
2,3 = {(0,2), (2,0), (1,1)}. B3(3,2) is therefore

. Q+
2,4 = {(0,0,2), (0,1,1), (1,0,1), (0,2,0), (1,1,0),

(2,0,0)}. Thus, B4(3,2) is .

Although (9) illuminates the underlying combinatorics, its convenience is limited by the difficulty of enu-
merating the membership of Q+

i,j. This subproblem appears to be even more difficult than computing the

unordered partitions of an integer,16 and leads to seek an alternative formula for Bj(d,i).

We can express Bj(d,i) in closed form by noting that there are  ways for vertices in a Gray-coded Kj
d to

have i digits that are different from those of the origin u0 = u. Using all the nonzero digit values radixj, we

can form (j-1)i labels from any given set of i such digits. By the fundamental counting rule, that is, we
obtain an expression that, by contrast to (9), is readily computed:

(10)

Verify by substitution that (10) satisfies the recurrence and boundary conditions of (8).

Equations (8), (9), and (10) are both relevant and illustrative of the power of Theorem 7. In addition to pro-
viding three ways of computing the number of vertices at distance i from any vertex in Kj

d, the theorem
springs forth other analytic results. For example, (9) and (10) imply the double identity:

(11)

Two paths are interior-disjoint if, apart from their endpoints, they do not intersect. In what follows we will
once again invoke two important facts: a) the connectivity of a graph is the minimum number of interior-
disjoint paths joining any two vertices;17 b) the connectivity of a graph is at most its minimum degree.18

With respect to (a), suppose that graph G has order at least f+3 and that between every pair of vertices in G
there are f+1 interior-disjoint paths of length at most q. Any quorum induced by deleting 0≤ i ≤ f vertices
of G, has diameter at most q. This observation motivates our formulations and proofs of Theorems 8 and 9.

16. An inexact m-maximum unordered partition of the integer i is an m-vector of nonnegative integers whose inner
product with a vector containing the first m positive integers equals i. ([Anderson 1998], pp. 65-67).
17. Attributed to Menger and Whitney, this result is used in the proof of Theorem 4. It is recounted by Theorems 5.10
and 5.11 of [Chartrand and Lesniak 1986].
18. This is used on page 9 to bound from below the size of an (f+1)-connected graph. Also see footnote 7.
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Theorem 8. (Connectivity, upper bound on diameter.) If j ≥ 3 then between vertices u and v in Kj
d there

are d(j-1) interior-disjoint paths, each of whose length is at most d+1. At least d of these
paths have length at most d.

Proof. By induction on d. For a basis, the theorem holds by inspection at d = 0 and d = 1. Assume that the
theorem holds in 0, … (d-1) dimensions, and regard arbitrary vertices u and v in Kj

d, d >1, j > 2. By steps

(i) and (ii) of the construction on page 15, u and v are contained in copies K ′ and K ″ of Kj
d-1. Refer to Fig-

ure 8. If K ′ ≠ K ″ then in K ′ inductively form (d-1)(j-1) interior-disjoint paths, of length at most d, from
u = u ′ to v ′. Here v ′ is the vertex in K ′ whose label, except in the high order digit, matches that of v = v ″.
Pick the first d-1 of these paths to have length at most d-1. Since these paths are interior-disjoint, each such
path passes through exactly one of the neighbors w1′, …, w(d-1)(j-1)′ of v ′. The path

Pu ′,w1′ ∪ (w1′, v ′) ∪ (v ′, v ″) has length at most d. Exclusive of w1′, there remain (d-1)(j-1)-1 neighbors

w2′, … w(d-1)(j-1)′ of v ′ in K ′. By steps (ii) and (iii) of the construction on page 15, each endpoint

w ′ ∈ {w2′, … w(d-1)(j-1)′} of the paths from u ′ to a neighbor w ′ of v ′ is adjoined to a counterpart

w ″ ∈ {w2″,… w(d-1)(j-1)″} in K ″. Except for the high order digit, the labels on w ′ and w ″ are the same.

Furthermore, the construction assures that each such w ″ in K ″ is a neighbor of v ″. Augmenting each of the
(d-1)(j-1)-1 paths Pu ′,w′ with edges (w ′, w″) and (w ″, v ″) yields a set of (d-1)(j-1)-1 paths

{Pu ′,w′ ∪ (w′, w″) ∪ (w ″, v ″)}, each of length at most d+1. The first d-2 of these paths have length at

most d. These paths are interior-disjoint with each other and with Pu ′,w1′ ∪ (w1′, v ′) ∪ (v ′, v ″). For the

remaining j-1 paths choose (u ′, u″) ∪  Pu ″,w1″  ∪ (w1″, v″), a path of length at most d, along with the set

{(u ′, u*) ∪ Pu*,v* ∪ (v*, v″)}. Here u*  and v*  have labels whose low order d-1 digits are identical to those

on u ′ resp. v ″, but whose corresponding high order digit differs from that of either u ′ or v ″. Pu*,v* is a

shortest path between u*  and v* , strictly contained in K ∗≠ K ′ ≠ K ″. By Theorem 7, Pu*,v* has length at

most d-1; thus (u ′, u*) ∪ Pu*,v* ∪ (v*, v″) has length at most d+1. The j-1 paths

Figure 8: Illustration of the first part of the proof of Theorem 8.
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(u ′, u″) ∪ Pu ″,w1″ ∪ (w1″, v″), {(u ′, u*) ∪ Pu*,v* ∪ (v*, v″)} are interior-disjoint with each other as well

as with Pu ′,w1′ ∪ (w1′, v ′) ∪ (v ′, v ″) and {Pu ′,w′ ∪ (w1′, v ′) ∪ (v ′, v ″)}. The ensemble constitutes d(j-1)
interior-disjoint paths. Each of has length at most d+1, and at least d of them have length at most d.

Refer to Figure 9. If K ′ =  K ″ then in K ′ inductively form (d-1)(j-1) interior-disjoint paths, of length at
most d, from u = u ′ to v = v ′. At least d-1 of these paths have length at most d-1, and each of the others
has length at most d. For the remaining j-1 paths choose the set {(u ′, u+) ∪  Pu+,v+  ∪ (v+, v ′)} . Here u+

and v+ have labels whose low order d-1 digits are identical to those on u ′ and v ′, but whose corresponding
high order digit is different. Pu+,v+ is a shortest path between u+ and v+, strictly contained in K +≠ K ′. By

Theorem 7, Pu+,v+ has length at most d-1; thus (u ′, u+) ∪ Pu+,v+ ∪ (v+, v ′) has length at most d+1. The j-1

paths {(u ′, u+) ∪ Pu+,v+ ∪ (v+, v ′)} are interior-disjoint with each other as well as with the (d-1)(j-1) inte-

rior-disjoint paths in K ′ from u = u ′ to v = v ′. The ensemble constitutes d(j-1) interior-disjoint paths, each
of which has length at most d+1. Since j > 2, at least (d-1)(j-1) ≥ d of these paths have length at most d.❒

For j = 2 the assertion of Theorem 8 is false; e.g., for C4 = K2
2 there are two paths between adjacent verti-

ces, and one of these paths has length 3 > d = 2. Regrettably, throughout this work we will often be rele-
gated to treating the case j = 2 separately. This admittedly awkward situation is, apparently, a consequence
of the natural order of things. For example, the radix 2 analog of Theorem 8 is:

Theorem 9. (Connectivity, upper bound on diameter.) Between two vertices in K2
d, d > 1, there are d

interior-disjoint paths of length at most d+1. At least d-1 of these paths have length at most d.

Proof. By induction on d. For a basis, the theorem holds by inspection at d = 2. Assume that the theorem
holds in 2, … (d-1) dimensions, and regard arbitrary vertices u and v in K2

d, d >2. By steps (i) and (ii) of

the construction on page 15, u and v are contained in copies K ′ and K ″ of K2
d-1. If K ′ ≠ K ″ then, in K ′ and

analogous to Figure 8 (but without K ∗), inductively form d-1 interior-disjoint paths, of length at most d,
from u = u ′ to v ′. Here v ′ is the vertex in K ′ whose label, except in the high order bit, matches that of
v = v ″. Pick the first d-2 of these paths to have length at most d-1. Since these paths are interior-disjoint,
each such path passes through exactly one of the neighbors w1′, …, w(d-1)′ of v ′. The path

Pu ′,w1′ ∪ (w1′, v ′) ∪ (v ′, v ″) has length at most d. Exclusive of w1′, there remain d-2 neighbors

Figure 9: Illustration of the second part of the proof of Theorem 8.
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w2′, … w(d-1)′ of v ′ in K ′. By steps (ii) and (iii) of the construction on page 15, each endpoint

w ′ ∈ {w2′, … w(d-1)′} of the paths from u ′ to a neighbor w ′ of v ′ is adjoined to a counterpart

w ″ ∈ {w2″,… w(d-1)″} in K ″. Except for the high order bit, the labels on w ′ and w ″ are the same. Further-

more, the construction assures that each such w ″ in K ″ is a neighbor of v ″. Augmenting each of the d-2
paths Pu ′,w′ with edges (w ′, w ″) and (w ″, v″) yields a set of d-2 paths {Pu ′,w′ ∪ (w′, w″) ∪ (w ″, v ″)},
each of length at most d+1. The first d-2 of these paths have length at most d. These paths are interior-dis-
joint with each other and with Pu ′,w1′ ∪ (w1′, v ′) ∪ (v ′, v ″). For the remaining path choose

(u ′, u″) ∪ Pu ″,w1″ ∪ (w1″, v″), a path of length at most d, interior-disjoint with

Pu ′,w1′ ∪ (w1′, v ′) ∪ (v ′, v ″) and with {Pu ′,w′ ∪ (w1′, v ′) ∪ (v ′, v ″)}. The ensemble constitutes d interior-
disjoint paths. Each of these paths has length at most d+1, and at least d-1 of them have length at most d.

If K ′ =  K ″ then, in K ′ and analogous to Figure 9, inductively form d-1 interior-disjoint paths, of length at
most d, from u = u ′ to v = v ′. At least d-2 of these paths have length at most d-1, and the other has length
at most d. For the remaining path choose (u ′, u+) ∪  Pu+,v+  ∪ (v+, v ′) . Here u+ and v+ have labels whose

low order d-1 bits are identical to those on u ′ and v ′, but whose corresponding high order bit is different.
Pu+,v+ is a shortest path between u+ and v+, strictly contained in K +≠ K ′. By Theorem 7, Pu+,v+ has length

at most d-1; thus (u ′, u+) ∪ Pu+,v+ ∪ (v+, v ′) has length at most d+1. The path (u ′, u+) ∪ Pu+,v+ ∪ (v+, v ′)
is interior-disjoint with the d-1 interior-disjoint paths in K ′ from u = u ′ to v = v ′. The ensemble consti-
tutes d interior-disjoint paths, each of which has length at most d+1, with at least d-1 having length no
greater than d. ❒

Combining equations (5) and (7), remarks (a) and (b) on page 18, and Theorems 8 and 9:

Corollary 9.1. Kj
d has order j d, connectivity d(j-1) and minimum size ½⋅d(j-1)j d.

Corollary 9.1 naturally leads us back to our central question: “What is the radius or diameter of quorums
induced by deleting up to d(j-1)-1 vertices of Kj

 ?” We can now begin to address this issue.
Theorems 8 and 9 give upper bounds on the diameter of any quorum H induced by deleting i vertices from
Kj

d, 0 ≤ i ≤ f = d(j-1)-1. If j > 2 and 0 ≤ i ≤ d-1 then from any vertex u in H we can reach all other vertices
of H by a path of length at most d. If j > 2 and d ≤ i ≤ d(j-1)-1 = f then from any vertex u in H we can
reach all the vertices of H by a path of length at most d+1. If j = 2 and 0 ≤ i ≤ d-2 then from any vertex u
we can reach all the vertices of H by a path of length at most d. If j = 2 and i = d-1 = f then from any ver-
tex u, we can reach all the vertices of H by a path of length at most d+1. In an extremal (i.e.,worst-case)
sense, these bounds are best possible. To see this we construct a class of counterexamples.

Consider arbitrary vertex u ′ in copy K ′ of Kj
d-1 ⊂ Kj

d. For d > j= 2, form H by deleting d-1 neighbors of

u ′, leaving undeleted one neighbor u ″ ∈ K ″ of u ′. The label of u ″ is same as that on u ′, except for the
high order bit. Let v ′ be the vertex in K ′ having label whose low order d-1 bits are all different from those
of u ′. In H any path of shortest distance <u ′, v ′> necessarily enters K ″ via the edge (u ′, u ″), follows a
path to some vertex z″ ∈ K ″, re-enters K ′ via edge (z″, z ′), and follows a path from z ′ to v ′. The length of
this path is at least <u ′, u ″> + <u ″, z″> + <z ″, z ′> + <z ′, v ′> ≥ 2 + <u ′, v ′> = d+1. By equation (5),

this construction holds for each of the 2 d values that u can take on. Of the  quorums formed by

deletion of i = d-1 vertices from a Gray-coded d-dimensional binary K-cube, that is, at least 2 d have diam-
eter d+1. This class of counterexamples refutes an "almost correct" claim of [Armstrong and Gray 1981]:

Between any two vertices in K2
d, d > 1, there are d interior-disjoint paths of length at most d.

2
d

d 1– 
 
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The preceding claim is corrected by Theorem 9, and generalized by Theorem 8.

Continuing the counterexamples, for j > 2 let u be the vertex whose label is all zeros. Hj
1 is just Kj

1 with u

deleted. For d = 2 delete from Kj
2 the vertex whose label is [0, j-1],  along with the vertex whose label is

[ j- 1, 0] . Any path from [0,0]  to [ j- 1, j-1] cannot go through the deleted vertices. The digits of the labels in
any such path change at least three times. By Theorem 7, any path from [0,0]  to [ j- 1, j-1]  in Hj

2 must

therefore have length at least 3 = d+1. For d > 2 recursively form Hj
d by replacing K ′, the zeroth copy of

Kj
d-1 ⊂ Kj

d, with Hj
d-1; connect vertex h of Hj

d-1 to vertex h of every other copy of Kj
d-1; prepend the label

on each vertex of Hj
d-1 with a zero. Complete the construction of Hj

d by deleting u ″, vertex 0 of the (j-1)st

copy of Kj
d-1 = K ″. Consider any shortest path P from u ′, vertex 0 in Hj

d-1, to v ″, vertex j-1 in K ″. Let v ′
be the vertex of Hj

d-1 whose label is the same a that on v ″, except that the high order digit of v ′ equals zero

instead of j-1. If P runs through Hj
d-1 and K ″ but through no other copy of Kj

d-1 then P cannot be of length

d; if it were then there would be a path in Hj
d-1 of length d-1 from u ′ to v ′, a contradiction. If P runs

through some copy of Kj
d-1 other than K ″ then, by Theorem 7, P has length at least d+1. Therefore P has

length at least d+1, and this is the diameter of Hj
d. By changing the label for u ′, there are j ways to con-

struct Hj
1. In higher dimensions d, there are  ways to choose the placement of Hj

d-1

and K ″. Of the  quorums formed by deletion of i = d  vertices from a Gray-coded d-dimensional j-

ary K-cube, that is, at least j d(j-1) d-1 have diameter d+1.

Theorem 10. Let H be any quorum induced by deleting i vertices from Kj
d, 0 ≤ i ≤ f = d(j-1)-1. The diam-

eter of H is at least d.

Proof. Vertices u and v are opposite if they are distance d apart; i.e., their labels differ in every position. By
equation (10), any given vertex u has (j-1) d opposites; that is, there are (j-1) d opposite pairs that include u.
Summing over all j d vertices counts every pair of opposites twice, and the total number of opposite pairs
equals ½⋅j d(j-1) d. Each vertex we delete from Kj

d removes at most (j-1) d opposite pairs. Therefore, there
remains at least one opposite pair as long as 

[d(j-1)-1](j- 1) d < ½⋅j d(j-1) d (12)

(12) is satisfied if d ≤ 2 d-2. For d ≥ 3, that is, (12) is valid for all integers j ≥ 2. For d = 2 verify by substi-
tution that (12) is satisfied for all j ≥ 2. At d = 1 the theorem follows by inspection. ❒

Theorem 11. Let H be any quorum induced by deleting i vertices from Kj
d, 0 ≤ i ≤ f = d(j-1)-1. If d = 1,

i = 0, or j ≥ 3 then the radius of H is at least d. If j = 2 and i ≥ 1 then the radius of H is at least d-1.

Proof. By (10), any undeleted vertex u has at least one opposite as long as      d(j-1)-1 < (j-1) d (13)

(13) is satisfied if d ≤ 2 d-1. For d ≥ 4, that is, (13) is valid for all integers j ≥ 3. For d = 3 and d = 2 verify
by substitution that (13) is satisfied for all j ≥ 3. The theorem follows by inspection for i = 0, as well as for
d = 1, j ≥ 2. It remains to consider the case i ≥ 1, d ≥ 2, j = 2. By equation (10), every vertex u in a binary
K-cube has exactly one opposite. Thus, deleting any vertex from K2

d leaves its opposite with eccentricity

at least d-1. By equation (10), there are + 1 = d + 1 vertices in K2
d at distance d-1 or d from u.

Since at most d-1 vertices are deleted, the eccentricity of every vertex is at least d-1. ❒

j
1 1 j 2–, , 

  j j 1–( )=

j
d

d 
 

d
d 1– 

 
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Radix j of
K-cube

Number i 
of vertices deleted, 

0 ≤≤≤≤ i ≤≤≤≤ f
f = [(j-1)⋅⋅⋅⋅logj n] -1

Radius Diameter Number i 
of vertices deleted, 

0 ≤≤≤≤ i ≤≤≤≤ f
f = [(j-1)⋅⋅⋅⋅logj n] -1

At least At most At least At most

2

0 log2 n
Theorem 7 log2 n

Theorems 9, 10
from 0

to [log2 n] - 2from 1
to [log2 n]- 2 [log2 n] - 1

Theorem 11

[log2 n]
Theorem 9

[log2 n] - 1 [log2 n] + 1
Theorem 9

log2 n
Theorem 10

[log2 n] + 1
Theorem 9 [log2 n] - 1

≥ 3

from 0
to [logj n] -1

logj n
Theorems 8, 11

logj n
Theorems 8, 10

from 0
to [logj n] - 1

from [logj n]
to [(j-1)⋅logj n] - 1

logj n
Theorem 11

[logj n] + 1
Theorem 8

logj n
Theorem 10

 [logj n] + 1
Theorem 8

from [logj n]
to [(j-1)⋅logj n] - 1

Table 9: Characteristics of quorums induced by deleting vertices of d-dimensional j-ary K-cubes Kj
d. Kj

d is 
constructible if and only if the maximum number of faults f equals [(j-1)⋅logj n] -1 and d = logj n.

Figure 10: Exact conditions on the number n = 16 of vertices and maximum number f = 3 of faults 
tolerated for constructibility of a K-cube, j = 2, d = 4. A K-cube is constructible if and only if the 

constraints intersect at integer values of d ≥ 1 and j ≥ 2. Plot by GRAFT calculator described in Section 3.8.

Figure 11: K-cube not feasible. At (n, f) = (16, 2), constraints on connectivity and vertex count fail to 
intersect at integer values. However, as Figure 13 shows, it is possible to construct a K-cube-connected 

cycle. Plotted by GRAFT calculator described in Section 3.8
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Refer to Table 9. In between the extremes f = 0, 1 and f = n-2, n-1, this section covers values of n and f
satisfying n = j d and f+1 = d(j-1); that is, K-cubes {Kj

d} = *+
n,log n,log n whose dimension, radix, and

vertex degree are related by formulae (5) and (6). Figure 10 illustrates these relations. However, and as
illustrated by Figure 11, our results do not include the cases where degree of a vertex is not equal to that of
some K-cube. As shown by Figure 13, we may be able to substitute a K-cube-connected cycle if the degree
is less that of some K-cube. That is, when f+1 < d(j-1) (14)

3.4  Quorums from K-cube-connected Cycles

 A d-dimensional j-ary K-cube-connected cycle of order n, denoted Kj
d(n), is the result of replacing each of

the j d vertices of Kj
d with n mod j d cycles, each of which contains n/j d vertices, along with

j d - n mod j d cycles, each of which contains n/j d vertices. Refer to Figure 12. For a basis, a zero-dimen-
sional K-cube-connected cycle Kj

0(n) is a cycle with vertices labeled from 0 to n/j 0 -1 (i.e., from 0 to

n-1). The high order d digits of the label on a vertex u in cycle h of Kj
d(n) are identical to the d digits on the

label of vertex h of the corresponding Kj
d. The low order digit on u is its label in the corresponding Kj

0(n).

Vertex u shares an edge with vertex v if and only if i)u and v are neighbors in a basic cycle Kj
0(n); or

ii) the low order digits of u and v are identical, and the high order digits differ in exactly one position, or
iii) there are n/j d vertices in the basic cycle of which u is a member, n / j d vertices in the basic cycle of
which v is a member, and u and v have the highest labels in their respective basic cycles.

 Since each basic cycle must contain at least three vertices, it follows that              n/3 ≥ j d (15)

is a constraint on the number of vertices in any Kj
d(n). If 0 = n mod j d then n = m⋅j d for some positive inte-

ger m. Since it contains exactly m vertices per basic cycle, we denote such a Kj
d(m⋅j d) by  Km⋅j

d.

Each vertex of Km⋅j
d has degree d(j-1)+2 = f+1 (16)

Summing the degree of every vertex counts each edge twice, hence

eK(d, j, n) = ½⋅m⋅j d⋅(d[j-1]+ 2) = ½⋅m⋅d⋅j d[j- 1]+ m⋅j d           (for n = m⋅j d) (17)

Since either j or j-1 is even, the first term on the righthand side of (17) is an integer; (17) is therefore an
integer. Substituting d(j-1)+2 = f+1, we see that (17) equals n(f+1)/2. Thus 0 = n mod j d implies that

the number of edges in Km⋅j
d is exactly that of any minimum size (f+1)-connected graph on m⋅j d vertices.

Suppose on the other hand that 0 ≠ n mod j d. By step (iii) above, we connect the vertex with the highest
label in each of the n mod j d long cycles to the vertex with the highest label in each of the j d - n mod j d

short cycles; moreover, we count these (n mod j d)(j d - n mod j d) “extra” edges only at d=1.

Figure 12: A K-cube-connected cycle Kj
d(n) has minimum size if and only if (19a) or (19b) holds.

01

00

03

12

10

11

22

20

21

K3
1(11)

K2
1(11)

02

edge count = 17,
minimum size

10

03
15

01

13
14

11

00

12

0204

23

edge count = 23,
one greater than minimum size

3-connected graph

of a 4-connected graph



X2000 Bus Fault Tolerance 3.4 Quorums from K-cube-connected Cycles

L. E. LaForge, revision 18-Oct-1999 25 Jet Propulsion Laboratory document JPL D-16485

Summing the degree of each vertex counts each edge twice. The number of edges in Kj
d(n) is therefore

eK(d, j, n) = ½⋅[ n⋅(d[j-1]+ 2) + (n mod j d )(j d - n mod j d)] (18)

Substituting d(j-1)+2 = f+1, we see that (18) equals ½⋅[ n(f+1) + (n mod j d )(j d - n mod j d)] . That is,
Kj

d(n) has minimum size n(f+1)/2 if and only if

either        a)    0 = n mod j d        or       b)    j = 2, d = 1, f = 2, n odd (19)

By comparison to K-cubes, our K-cube-connected cycles must satisfy three constraints: (15), (16), and
(19). Despite this, and as illustrated by Figure 13, a (d-2)-dimensional K-cube-connected cycle may be
constructible where the corresponding d-dimensional K-cube is not. Note that (19) says quite a bit about
the structure of K-cube-connected cycles Kj

d(n) of size n(f+1)/2 : either Kj
d(n) is a Km⋅j

d, or, for all n and

f = 2, Kj
d(n) = K2

1(n) comprises two cycles, one with n/2 vertices, the other consisting ofn/2 vertices.

The latter holds since if n is not odd then 2 divides n; in this case (19a) is satisfied, and we have a Km⋅2
1. In

particular, the size of any one-dimensional binary K-cube-connected cycle is the same as that 3n/2  of a

3-connected graph with fewest edges. This is of some interest since K2
1(n) was, in fact, one of the candi-

date architectures proposed by [Charlan et al 11-Jun-1998] for X2000 avionics (indeed, Section 3.10 rec-
ommends K2

1(n) as a graph architecture of choice). Note also that our definition of a K-cube-connected
cycle is somewhat different from that described by [Preparata and Vallemin 1981] and analyzed by [Baner-
jee et al 1986]. For the remainder of this section we write m in place of the integer value n/j d . 

Theorem 12. (Connectivity, upper bound on diameter.) If  j ≥ 3 then between vertices u and v in Km⋅j
d there

are d(j-1)+2 interior-disjoint paths, none of whose length exceeds d + m - 1. The length of
d(j-1)+1 of these paths is at most d + m/2 + 1. The length of d+1 of these paths is at most
max(2,d) + max(2, m/2 ) .

Proof. Denote by C ′ and C ″ the respective basic cycles for u and v. Suppose that C ′ ≠ C ″
(implying d ≥ 1), and the low order digits of the labels on u = u ′ and v = u ″ are the same. By Theorem 8,
between u ′ and u ″ there are d(j-1) interior-disjoint paths {Pu′, u″} of length at most d+1, at least d of which
have length at most d. The low order digit of the label on each vertex of every one of the paths in {Pu′, u″}

is the same as the low order digit on u ′ and u ″. Let w ′ and z ′ be neighbors of u ′ in C ′. By Theorem 8,
there are shortest interior-disjoint paths Pw′, w″, Pz′, z″ from w ′ resp. z ′∈C ′ to w ″ resp. z″∈C ″; the low

order digit of the label on each vertex of Pw′, w″ and Pz′, z″ is the same as the low order digit on w ′ and w ″

Figure 13: K-cube-connected cycle feasible where K-cube is not. Compare to Figure 12.
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resp. z ′ and z″; neither Pw′, w″ nor Pz′, z″ traverses more than d edges. The d(j-1)+2 interior-disjoint paths

(u′, w ′) ∪ Pw′, w″ ∪ (w ″, u″), (u′, z ′) ∪ Pz′, z″ ∪ (z″, u″), and {Pu′, u″} have length at most
d + 2 ≤ d + m/2 + 1 ≤ d + m - 1 (the latter is a consequence of (15)). The length of
(u′, w ′) ∪ Pw′, w″ ∪ (w ″, u″) is at most d + 2 ≤ max(2,d) + max(2, m/2 ) ; the length of the d shortest
paths in {Pu′, u″} is at most d; therefore, at least d+1 of the prescribed paths have length at most
max(2,d) + max(2, m/2 ) .

Suppose that C ′ ≠ C ″ (implying d ≥ 1) and that the low order digits of the labels on u = u ′ and v = v″ are
different. Refer to Figure 14. By Theorem 8, there are d(j-1) interior-disjoint paths {Pu′, u″} between u ′ and

u ″∈C ″, all of which have length at most d+1, and at least d of which have length at most d. The low order
digit of the label on each vertex of every one of the paths in {Pu′, u″} is the same as the low order digit on u ′
and u ″. Let (u*, u ″) be the last edge in any one of the d(j-1)-1 longest such paths Pu′, u″ , and replace this

edge with a shortest path Pu∗, v∗ in C ∗ followed by the edge (v ∗, v″). Applying this process to all but a

shortest path in {Pu′ ,u″} yields d(j-1)-1 interior-disjoint paths {Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)}, each of length
at most d+1+  m/2, with at least d-1 of these paths no longer than d +  m/2 .. Let Qu′, u″ be the path in
{Pu′, u″} (of length at most d) not modified by the preceding procedure. Augment Qu′, u″ with Pu″, v″, the

shortest path (of length at most m/2 ) between u ″ and v ″ in C ″. Let Pu′, v′ be the shortest path (of length

at most m/2 ) in C ′ between u ′ and v ′. Augment Pu′, v′ with Qv′, v″, a path between v ′ and v ″ (and of

length at most d) that passes through the same basic cycles as Qu′, u″ . Let z′ be the neighbor of v ′ along a

path Pu′, z′ ∪ (z ′, v ′) from u ′ to v ′ in C ′, such that Pu′, z′ does not intersect the interior of Pu′, v′ (since C ′
contains at least three vertices, z′ is distinct from u ′). Augment Pu′, z′ (whose length is at most m -2) with

Qz′, z″, a path between z ′ and z″ (and of length at most d) that passes through the same basic cycles as

Qu′, u″ and Qv′, v″ . The combination of Pu′, z′ ∪ Qz′, z″ ∪ (z″, v ″), Qu′, u″ ∪ Pu″,v″, Pu′, v′ ∪ Qv′, v″, and

Figure 14: Illustration of the second part of the proof of Theorem 12, proof of Theorem 19.
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{Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)} constitute d(j-1)+2 interior-disjoint paths. Pu′, z′ ∪ Qz′, z″ ∪ (z″, v ″) has

length at most d + m - 1. d(j-2) of the paths in {Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)} have length at most
d + m/2 + 1. Qu′, u″ ∪ Pu″, v″ , Pu′, v′ ∪ Qv′, v″, along with the d-1 shortest paths in

{Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)}, comprise d+1 interior-disjoint paths, each of whose length is at most
d +  m/2 ≤ max(2,d) + max(2, m/2 ).

Suppose that C ′ = C ″. By Theorem 7, there are d(j-1) basic cycles {C ∗} connected to C ′ via edges
{(u ′, u*)}. Within any such C ∗ there is, from u*  to v* , a shortest path Pu∗, v∗ of length at most m/2. Here

v*  is the vertex whose low order digit is the same as that on v ′, but whose d high order digits are the same
as those on u*  (i.e., that differ in one digit from the d high order digits on the label of u ′ or v ′). The d(j-1)

paths {(u ′, u*) ∪ Pu∗, v∗ ∪ (v*, v ′)} are interior-disjoint, and each has length at most
2 + m/2 ≤ d + m/2 + 1 (the inequality is satisfied for d ≥ 1, and does not pertain at d = 0). To this add

the shortest Pu′, v′ and longest Qu′, v′ paths between u and v, strictly contained in C ′. The latter two paths
have lengths at most m /2 ≤ d + m/2 resp. m -1 ≤ d + m - 1. If d = 0 then there is d+1 = 1 path
(i.e., Pu′, v′) of length m /2 ≤ max(2,d) + max(2, m/2 ) . Otherwise, d ≥ 1 and any d+1 paths from

{(u ′, u*) ∪ Pu∗, v∗ ∪ (v*, v ′)}, traverse no more than 2+ m/2 ≤ max(2,d) + max(2, m/2 ) edges. Ver-

ify that Pu′, v′ and Qu′, v′ are interior-disjoint with each other and with {(u ′, u*) ∪ Pu∗, v∗ ∪ (v*, v ′)}. ❒

Theorem 13. (Connectivity, upper bound on diameter.) If j = 2 then between vertices u and v in Km⋅2
d

there are d+2 interior-disjoint paths. The length of each of these paths does not exceed
d + m - 1. The length of d+1 of these paths is at most d + m/2 + 1; the length of d of these
paths is at most max(2,d) + max(2, m/2 ).

Proof. Denote by C ′ and C ″ the respective basic cycles for u and v. Suppose that C ′ ≠ C ″
(implying d ≥ 1), and the low order digits of the labels on u = u ′ and v = u ″ are the same. By Theorem 9,
between u ′ and u ″ there are d interior-disjoint paths {Pu′, u″} of length at most d+1, at least d-1 of which
have length at most d. The low order digit of the label on each vertex of every one of the paths in {Pu′, u″}

is the same as the low order digit on u ′ and u ″. Let w ′ and z ′ be neighbors of u ′ in C ′. By Theorem 9,
there are shortest interior-disjoint paths Pw′, w″, Pz′, z″ from w ′ resp. z ′ in C ′ to w ″ resp. z″ in C ″. The low

order digit of the label on each vertex of Pw′, w″ and Pz′, z″ is the same as the low order digit on w ′ and w ″
resp. z ′ and z″; neither Pw′, w″ nor Pz′, z″ traverses more than d edges. The d+2 interior-disjoint paths

(u′, w ′) ∪ Pw′, w″ ∪ (w ″, u″), (u′, z ′) ∪ Pz′, z″ ∪ (z″, u″), and {Pu′, u″} have length at most
d+2 ≤ d +  m/2 + 1 ≤ d + m - 1 (the latter inequality holds by (15)). At least d+1 of these paths have
length at most d + 2 ≤ d + 1 +  m/2 . Among the latter, at least d paths have length at most
d + 2 ≤ max(2,d) + max(2, m/2 ).

Suppose that C ′ ≠ C ″(implying d ≥ 1), and the low order digits of the labels on u = u ′ and v = v″ are dif-
ferent. As in the proof of Theorem 12, the essential argument is illustrated by Figure 14. By Theorem 9,
there are d interior-disjoint paths {Pu′, u″} between u ′ and u ″∈C ″, all of which have length at most d+1,
and at least d-1 of which have length at most d. The low order digit of the label on each vertex of every one
of the paths in {Pu′, u″} is the same as the low order digit on u ′ and u ″. Let (u*, u″) be the last edge in any

one of the d-1 longest such paths Pu′, u″ , and replace this edge with a shortest path Pu∗, v∗ in C ∗ followed

by the edge (v ∗, v″). Applying this process to all but a shortest path in {Pu′, u″} yields d-1 interior-disjoint

paths {Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)}, each of length at most d+1+ m/2 , with at least max(0, d-2) of these



X2000 Bus Fault Tolerance 3.4 Quorums from K-cube-connected Cycles

L. E. LaForge, revision 18-Oct-1999 28 Jet Propulsion Laboratory document JPL D-16485

paths no longer than d + m/2 .. Let Qu′, u″ be the path in {Pu′, u″} (of length at most d) not modified by the

preceding procedure. Augment Qu′, u″ with Pu″, v″, the shortest path (of length at most m/2) between u ″
and v ″ in C ″. Let Pu′, v′ be the shortest path (of length at most m/2) in C ′ between u ′ and v ′. Augment

Pu′, v′ with Qv′, v″, a path between v ′ and v ″ (and of length at most d) that passes through the same basic

cycles as Qu′, u″ . Let z′ be the neighbor of v ′ along a path Pu′, z′ ∪ (z ′, v ′) from u ′ to v ′ in C ′, such that

Pu′, z′ does not intersect the interior of Pu′, v′ (since C ′ contains at least three vertices, z′ is distinct from u ′).
Augment Pu′, z′ (whose length is at most m - 2) with Qz′, z″, a path between z ′ and z″ (and of length at
mostd) that passes through the same basic cycles as Qu′, u″ and Qv′, v″ . The combination of

Pu′, z′ ∪ Qz′, z″ ∪ (z″, v ″), Qu′, u″ ∪ Pu″,v″ , Pu′, v′ ∪ Qv′, v″, and {Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)} constitutes

d+2 interior-disjoint paths. Pu′, z′ ∪ Qz′, z″ ∪ (z″, v ″) has length at most d + m - 1. One of the paths in

{Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)} has length at most d +  m/2 + 1. At least d interior-disjoint paths have
length at most d + m/2 ≤ max(2,d) + max(2, m/2 ); namely, Qu′, u″ ∪ Pu″, v″ , Pu′, v′ ∪ Qv′, v″, and d-2

of the paths in {Pu′, u∗ ∪ Pu∗, v∗ ∪ (v ∗, v″)}.

Suppose that C ′ = C ″. By Theorem 7, there are d basic cycles {C ∗} connected to C ′ via edges {(u ′, u*)}.
Within any such C ∗ there is, from u*  to v* , a shortest path Pu∗, v∗ of length at most m/2 . Here v*  is the

vertex whose low order digit is the same as that on v ′, but whose d high order digits are the same as those
on u*  (i.e., that differ in one digit from the d high order digits on the label of u ′ or v ′). The d paths
{(u ′, u*) ∪ Pu∗, v∗ ∪ (v*, v ′)} are interior-disjoint, and each has length at most
2 +  m/2 ≤ d +  m/2 + 1. To this collection add the shortest Pu′, v′ and longest Qu′, v′ paths between u

and v, strictly contained in C ′. The latter two paths have lengths at most m /2 ≤ d + m/2 resp.
m -1 ≤ d + m - 1. If d = 0 then there is d+1 = 1 path (i.e., Pu′, v′) of length
m /2 ≤ max(2,d) + max(2, m/2 ). Otherwise, d ≥ 1 and any d+1 paths from
{(u ′, u*) ∪ Pu∗, v∗ ∪ (v*, v ′)}, traverse no more than 2+ m/2 ≤ max(2,d) + max(2, m/2 ) edges. Ver-

ify that Pu′, v′ and Qu′, v′ are interior-disjoint with each other and with {(u ′, u*) ∪ Pu∗, v∗ ∪ (v*, v ′)}. ❒

Theorem 14. (Connectivity, upper bound on diameter.) Between vertices u and v in a K2
1(2m+1) there are

3 interior-disjoint paths, each of which is no longer than m+1. The length of 2 of these paths
is at most 2+ m/2 ; the length of one of these paths is at most 1+ m/2 .

Proof. By (15), m ≥ 3. Without loss of generality let C ′ be the basic cycle with the fewer number m of ver-
tices. Denote by C ′ and C ″ the respective basic cycles for u and v. We consider six cases.

Case I. Suppose that C ′ ≠ C ″ and that the low order digits of the labels on u = u ′ and v = u ″ are the same.
Vertices u ′ and v ″ are connected by an edge (u ′, v″) whose length is at most 1 ≤ 1 + m/2 . Let w ″ and
z″ be neighbors of u ″ in C ″. If the low order digit on one of w ″ or z″ (say, z″) equals m then either there
is a) a path (u′, z″) ∪ (z″, v″) (i.e., u′ is vertex m-1 of C ′) or b) a path (u′, x′) ∪ (x′, z″) ∪ (z″, v″) , (i.e., x′
is vertex m-1 of C ′). If (a) then there is also a path (u′, w′) ∪ (w′, w″) ∪ (w″, v″) (i.e., w′ and w″ are verti-
ces in C ′ resp. C″ whose low order digit equals m-2). If (b) then there is also a path
(u′, w′) ∪ (w′, w″) ∪ (w″, v″) (i.e., w′ and w″ are vertices in C ′ resp. C″ whose low order digit equals 1). If
the low order digit on neither w ″ or z″ equals m then, in addition to (u ′, v″), trace the paths
(u′, w ′) ∪ (w′, w″) ∪ (w ″, v″) and (u′, z ′) ∪ (z′, z″) ∪ (z″, v″) .
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Case II. Suppose that C ′ ≠ C ″ and that the low order digit of v = v ″ equals m (thus u = u ′ and v ″ differ in
their low order digits). Refer to Figure 15A. Let x′ be vertex m-1 of C ′ (with two neighbors in C ″, x ″ and
v ″); denote by Pu′, x′ the path in C ′ from u = u ′ to x ′, according to increasing value of the labels. With w′
the zeroth vertex in C ′ (w′ and u′ may be identical), write Pu′, w′ for the path in C ′ from u ′ to w′, in
descending order of labels. Taking w″ to be the zeroth vertex in C ″, paths Pu′, x′ ∪ (x′, v″) and
Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) are interior-disjoint. The length of Pu′, x′ plus the length of Pu′, w′ equals m-1.
Pu′, w′ has length 0 ≤ k ≤ m-1; Pu′, x′ has length m-k-1. That is, Pu′, x′ ∪ (x′, v″) has length k+1 and
Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) has length m-k+1. If k ≤ m-k then the length of Pu′, x′ ∪ (x′, v″) is at most
1 + m/2  and the length of Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) is at most m+1. In addition, trace

(u′, u″) ∪ Pu″,x″ ∪ (x″, v″), where in C ″ vertex u″ and path Pu″,x″ are counterparts to u ′ and Pu′, x′  in C ′.
(u′, u″) ∪ Pu″,x″ ∪ (x″, v″) has length k+2 ≤ 2 + m/2 , and is interior-disjoint from Pu′, x′ ∪ (x′, v″) and
Pu′, w′ ∪ (w′, w″) ∪ (w″, v″). Refer to Figure 15B. If k ≥ m-k+1 then the length of
Pu′, w′ ∪ (w′, x′) ∪ (x′, v″) is at most  (m+1) /2 ≤ 1 + m/2  and the length of

Pu′, y′ ∪ (y′, y″) ∪ (y″, x″) ∪ (x″, v″) is at most m+1. Here y′ and y″ are the vertices of C ′ and C ″ whose

low order digit equals m-2. In addition, trace (u′, u″) ∪ Pu″,w″ ∪ (w″, v″), where in C ″ vertex u″ and path

Pu″,w″ are counterparts to u ′ and Pu′, w′ in C ′. (u′, u″) ∪ Pu″,w″ ∪ (w″, v″) has length
k+1 ≤  (m+1) /2 ≤ 1 +  (m+1) /2 , and is interior-disjoint from Pu′, w′ ∪ (w′, x′) ∪ (x′, v″) and
Pu′, y′ ∪ (y′, y″) ∪ (y″, x″) ∪ (x″, v″) .

Case III. Suppose that C ′ ≠ C ″, that the low order digit of v = v ″ is not equal to m (i.e., v ″ is not the
“extra” vertex z″ in C ″), and that the value of the low order digit on the label of u ′ is less than that on v ″.
Refer to Figure 16A. Let x′ be vertex m-1 of C ′ (with two neighbors in C ″, x ″ and v ″); denote by Pu′, v′ the

path in C ′ from u ′ to x ′, according to increasing value of the labels. With v′ the vertex in C ′ whose low
order digit is the same as that on v ″, write Pu′, v′ for the path in C ′ from u ′ to v′, in descending order of

Figure 15: Illustration of Case II of Theorem 14, u and v in different cycles, v the “extra” vertex.
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labels. Denote by Pu′, x′ the path in C ′ from u ′ to x′, in ascending order of labels. Let Pz″,v″ be the path in

C ″ from z″ to v ″ that includes the zeroth vertex of C ″. Paths Pu′, v′ ∪ (v′, v″) and Pu′, x′ ∪ (x′, z″) ∪ Pz″, v″
are interior-disjoint. The length of Pu′, v′ plus the length of Pu′, x′ and Pz″,v″ equals m. Pu′, v′ has length
0 ≤ k ≤ m; the length of Pu′, x′ plus the length of Pz″,v″ is m-k. That is, Pu′, v′ ∪ (v′, v″) has length k+1 and
Pu′, x′ ∪ (x′, z″) ∪ Pz″,v″ has length m-k+1. If k ≤ m-k then, as shown in Figure 16A, the length of
Pu′, v′ ∪ (v′, v″) is at most 1+ m/2  and the length of Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) is at most m+1. In

addition, trace (u′, u″) ∪ Pu″,v″, where in C ″ vertex u″ and path Pu″,v″ are counterparts to u ′ and Pu′, v′ in

C ′. (u′, u″) ∪ Pu″,v″ has length k+1 ≤ 2 + m/2 , and is interior-disjoint from Pu′, v′ ∪ (v′, v″) and
Pu′, x′ ∪ (x′, z″) ∪ Pz″,v″. If k ≥ m-k+1 then, as shown in Figure 16B, Pu′, x′ ∪ Px′, v′ ∪ (v′, v″) has length at
most 1+ m/2, (u′, u″) ∪ Pu″,x″ ∪ (x″, z″) ∪ Pz″,v″ has length at most 2+ m/2 , and

Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) has length at most m+1. Here w′ and w″ are the vertices of C ′ and C ″ whose
low order digit is one greater than those of v′ and v″ (w′ and w″ may be identically u′ resp. u″) .

Case IV. As for Case III, only in this instance assume that the value of the low order digit on the label of
u ′ is greater than that on v ″. Refer to Figure 17A. With v′ the vertex in C ′ whose low order digit is the
same as that on v ″, write Pu′, v′ for the path in C ′ from u ′ to v′, in descending order of labels. Denote by

Pu′, x′ the path in C ′ from u ′ to x′, in ascending order of labels. Let Pz″,v″ be the path in C ″ from z″ to v ″
that passes through the zeroth vertex of C ″. Paths Pu′, v′ ∪ (v′, v″) and Pu′, x′ ∪ (x′, z″) ∪ Pz″,v″ are interior-
disjoint. The length of Pu′, v′ plus the length of Pu′, x′ and Pz″,v″ equals m. Pu′, v′ has length 0 ≤ k ≤ m; the
length of Pu′, x′ plus the length of Pz″,v″ is m-k. That is, Pu′, v′ ∪ (v′, v″) has length k+1 and
Pu′, x′ ∪ (x′, z″) ∪ Pz″,v″ has length m-k+1. If k ≤ m-k then, as shown in Figure 17A, the length of
Pu′, v′ ∪ (v′, v″) is at most 1+ m/2  and the length of Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) is at most m+1. In

addition, trace (u′, u″) ∪ Pu″,v″, where in C ″ vertex u″ and path Pu″,v″ are counterparts to u ′ and Pu′, v′ in

Figure 16: Case III of Theorem 14, u and v in different cycles, u’s low order digit less than that of v.
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C ′. (u′, u″) ∪ Pu″,v″ has length k+1 ≤ 2 + m/2 , and is interior-disjoint from Pu′, v′ ∪ (v′, v″) and
Pu′, x′ ∪ (x′, z″) ∪ Pz″,v″. If k ≥ m-k+1 then, as shown in Figure 17B, Pu′, x′ ∪ Px′, v′ ∪ (v′, v″) has length at
most 1+ m/2, (u′, u″) ∪ Pu″,x″ ∪ (x″, z″) ∪ Pz″,v″ has length at most 2+ m/2 , and

Pu′, w′ ∪ (w′, w″) ∪ (w″, v″) has length at most m+1. Here w′ and w″ are the vertices of C ′ and C ″ whose
low order digit is one greater than those of v′ and v″ (w′ and w″ may be identically u′ resp. u″).

Case V. Suppose that both u = u ′ and v = v ′ are in C ′. Let Pu′, v′ and Qu′, v′ be interior-disjoint paths in C ′
between u ′ and v ′. The sum of the lengths of the paths Pu′, v′ and Qu′, v′ equals m. Without loss of general-
ity assume that Pu′, v′ is the shorter path with length k; i.e., 1 ≤ k ≤  m/2 ≤ 1 + m/2 . The length of

Qu′, v′ is therefore m-k, with m/2 ≤ m-k≤ m-1. At most one of u ′ and v ′ can have more than one neigh-

bor in C ″. Without loss of generality assume that v′ only has one neighbor v ″ in C ″. Let u ″ be u ′ ‘s neigh-
bor in C ″ that is closest to v ″ via a path Pu″, v″, strictly contained in C ″. The length of Pu″, v″ is k+1, and so

(u′, u″) ∪ Pu″, v″ ∪ (v ″, v′) traverses at most k+3 edges. If the length of Pu′, v′ is at its maximum

 m/2 ≤ 1 + m/2  then Qu′, v′ has length m/2 ≤ 2 + m/2  and (u′, u″) ∪ Pu″, v″ ∪ (v ″, v′) has length
at most 3+ m/2 ≤ m+1. (The latter is established by considering separately the cases where m is even
and odd, and noting that 4 is the minimum value of m even.) Otherwise, the length of
(u′, u″) ∪ Pu″, v″ ∪ (v ″, v′) is at most 2+ m/2, and Qu′, v′ has length at most m-1 ≤ m+1. Verify that

Pu′, v′, Qu′, v′, and (u′, u″) ∪ Pu″, v″ ∪ (v ″, v′) are interior-disjoint.

Case VI. Suppose that both u = u″ and v = v″ are in C ″. Let Pu″, v″ and Qu″, v″ be interior-disjoint paths in

C ″ between u″ and v″. The sum of the lengths of the paths Pu″, v″ and Qu″, v″ equals m+1. Without loss of
generality assume that Pu″, v″ is the shorter path with length at most (m+1) /2 ≤ 1 + m/2 . The length

of Qu″, v″ is therefore no greater than m ≤ m+1. Let u ′ be u ″ ‘s neighbor in C ′ that is closest to v ″ via a

Figure 17: Case IV of Theorem 14, u and v in different cycles, u’s low order digit greater than that of v.
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path Ru′, v′, strictly contained in C ′. While it is possible that the low order digit on the label of u ′ or v ′ dif-

fers from that of u ″ resp. v ″, in any case the length of Pu′, v′ is at most m/2. Thus

(u″, u′) ∪ Pu′, v′ ∪ (v′, v″) traverses at most 2+ m/2 edges.

In every case, we have three interior-disjoint paths, each of whose length is at most m+1; two of the paths
have length at most 2+  m/2 ; one path is no longer than 1+ m/2 . ❒

Corollary 14.1. Kj
d(n) has connectivity d(j-1)+2 and minimum size ½⋅[ n⋅(d[j-1]+ 2) =  n(f+1)/2 if and

only if conditions (15), (16), and (19) are satisfied.

Theorems 12, 13, and 14 extend Theorems 8 and 9 from K-cubes to K-cube-connected cycles. For
0 ≤ i ≤ f = d(j-1)+1, the theorems enable us to bound from above the diameter of any quorum H induced
by deleting i vertices from a Kj

d(n) whose size, with respect to (f+1)-connectivity, is minimum.

If j > 2 and 0 ≤ i ≤ d then from any vertex in H we can reach all other vertices by a path of length at most
max(2,d) + max(2, m/2 ) . If j > 2 and d+1 ≤ i ≤ d(j-1) then from any vertex in H we can reach all other
vertices by a path of length at most d + m/2 + 1. If j > 2 and i = d(j-1)+1 = f then from any vertex in H
we can reach all other vertices by a path of length at most d + m - 1.

If j = 2, n is even, and 0 ≤ i ≤ d-1 then from any vertex in H we can reach all other vertices by a path of
length at most max(2,d) + max(2, m/2 ). If j > 2, n is even, and i = d then from any vertex in H we can
reach all other vertices by a path of length at most d + m/2 + 1. If j > 2, n is even, and i = d+1 = f then
from any vertex in H we can reach all other vertices by a path of length at most d+m-1.

If j = 2, n is odd, d = 1, and i = 0 then from any vertex in H we can reach all other vertices by a path of
length at most 1+ (n-1) /4 . If j = 2, n is odd, d = 1, and i = 1 then from any vertex in H we can reach all
other vertices by a path of length at most 2+ (n-1)/4 . If j = 2, n is odd, d = 1, and i = 2 = f then from
any vertex in H we can reach all other vertices by a path of length at most 1+ (n-1) /2.

Unlike our development for K-cubes, we do not exhibit a class of extremal counterexamples that show
how the preceding bounds are best possible. Instead we pursue analogs to Theorems 10 and 11. Our devel-
opment extends (8) and (10) to Bj(d,i,m), the number of vertices at distance i from any vertex u in Km⋅j

d.
Without loss of generality assume that u ’s label consists of all zeros. At d = 0 we have an n-vertex cycle
Kj

0(m⋅ j d). For 1≤ i < m/2  two vertices lie at distance i from u. For i = m/2 = m/2, m is even, and one
vertex lies at distance m/2 from u; for i = m/2 = (m-1) /2, m is odd, and two vertices lie at distance
(m-1)/2 from u. In higher dimensions, suppose that u = u ′ is in K ′, one of j copies of Km⋅j

d-1 comprising

Km⋅j
d. The number of vertices distance i from u ′ equals the number of vertices in K ′ that are distance i

from u ′ plus j-1 times the number of vertices in any other copy K ″ of Km⋅j
d-1 that are distance i-1 from the

counterpart u ″∈K ″ of u ′. Thus, the recurrence relation for Bj(d,i,m) is identical to that (8) for Bj(d,i), but
with different boundary conditions:

Bj(d,0,m) = 1, Bj(0,i,m) = 2, 1 ≤ i < m/ 2, Bj(0, m/2 , m) = 2 - [ (m-1) mod 2] (20)

Table 10 illustrates the triangular computation of Bj(d,i,m), analogous to that shown for Bj(d,i) in Table 8.
With boundary conditions (20), we do not know how to solve the recurrence of (8) in a closed-form fash-
ion akin to (10). However, we can shed light on the solution imposed by (20) by noting that a shortest path
from the origin u to any vertex v in Km⋅j

d passes through the origin of some other basic cycle. Therefore,
the number of vertices at distance i from u equals the number of vertices having a label that differs from
that of u in i of the d high order digits (but whose low order digit is the same), plus (fanning out in the
respective cycles) twice the number of vertices having a label that differs from that of u in i-1 of the d high
order digits, plus … plus twice the number of vertices having a label that differs from that of u in
i - m/2 - 1 of the d high order digits, plus either twice the number of vertices having a label that differs
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from that of u in i - m/2 of the d high order digits (if m is odd) or the number of vertices having a label
that differs from that of u in i - m/2 of the d high order digits (if m is even). That is:

(21)

For the summand in (21) we have used relation (10). The lower and upper indices follow by noting that
Bj(d,i) is nonzero if and only if 0 ≤ i - h ≤ d. In two cases of particular interest, (21) reduces to

Bj(d,d+m/2, m) = (2 - [ (m-1) mod 2])⋅(j-1)d (22)

Bj(d,d+m/2 -1, m) = 2⋅(j-1)d + d⋅(2 - [ (m-1) mod 2])⋅(j-1)d-1 (23)

Theorem 15. Let H be any quorum induced by deleting i vertices from Km⋅j
d, 0 ≤ i ≤ f = d(j-1)+1. The

diameter of H is at least d + m/2 .

Proof. Vertices u and v are opposite if they are distance d + m/2 apart; i.e., the high order digits of their
labels differ in every position and their shortest path along a corresponding m-vertex cycle is has maximum
length m/2 . If m is odd then, by equation (22), any given vertex u has 2(j-1) d opposites; that is, there are
2(j-1) d opposite pairs that include u. Summing over all m⋅j d vertices counts every pair of opposites twice,
and the total number of opposite pairs equals j d(j-1) d. Each vertex we delete from Km⋅j

d removes at most

2(j-1) d opposite pairs. Therefore, there remains at least one opposite pair as long as 

[d(j-1)+1] ⋅2⋅(j-1) d < 2⋅m⋅j d⋅(j-1) d (24)

By (15), m ≥ 3; since j ≥ 2, inequality (24) is satisfied if d+1 ≤ 3⋅2 d. The latter holds if d ≤ 2 d+1, which, by
differentiation, is readily verified for all nonnegative d. If m is odd then we obtain inequality (24) with both
sides divided by two. The theorem follows since d+1 ≤ 3⋅2 d. ❒

Theorem 16. Suppose that j ≥ 3 and let H be any quorum induced by deleting i vertices from Km⋅j
d,

0 ≤ i ≤ f = d(j-1)+1. If i = 0 then the radius of H equals d + m/2 . If d(j-1) ≤ i ≤ d(j-1)+1,
m is even, and d ≤ 2 then the radius of H is at least d + m/2 - 1. Otherwise the radius of H
is at least d + m/2 .

↓ d j = 2, m = 5 j = 3, m = 4

 → i 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 2 1 2 1

1 1 3 4 2 1 4 5 2

2 1 4 7 6 2 1 6 13 12 4

3 1 5 11 13 8 2 1 8 25 38 28 8

4 1 6 16 24 21 10 2 1 10 41 88 104 64 16

5 1 7 22 40 45 31 12 2 1 12 61 170 280 272 144 32

Table 10: Number Bj(d,i,m) of vertices at graph distance i from any other in Km⋅j
d, formed by replacing 

each of the j d vertices of a d-dimensional j-ary K-cube with a cycle on m vertices. 

Bj d i m, ,( )   
j 1–( )i h– d

i h– 
 

h max 0 i d–,( )=

min i m 1–
2

-------------, 
 

∑
  

j 1–( ) i h– d
i h– 

 

h max 1 i d–,( )=

min i m 1–
2

-------------, 
 

∑
+=
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Proof. If i = 0 then H = Km⋅j
d; by (21), the radius of Km⋅j

d equals d + m/2 . Suppose m is odd and j ≥ 3.
By (22), there remains at least one vertex opposite to any undeleted vertex u as long as

d(j-1)+1 < 2⋅(j-1) d (25)

(25) is satisfied if d ≤ 2 d-1. The latter holds by Theorem 11. Suppose that m is even and j ≥ d ≥ 3. By equa-
tion (22), there remains at least one vertex opposite to any undeleted vertex u as long as

d(j-1)+1 < (j-1) d (26)

(26) is satisfied if d+1 ≤ 2 d-1. Verify that the latter holds for j ≥ d ≥ 3. Suppose that m is even and
i ≤ d(j-1)-1. By equation (22), undeleted vertex u has an opposite as long as

d(j-1)-1 < (j-1) d (27)

which holds by Theorem 11. Suppose that m is even, j ≥ 3, d ≤ 2, and d(j-1) ≤ i ≤ d(j-1)+1. By equations
(22) and (23), from u there remains at least one vertex at distance d + m/2  or d + m/2 - 1 as long as

d(j-1)+1 < (2j + d - 2)⋅(j-1) d-1 (28)

Verify by substitution that (28) holds for d = 0, 1, and 2. ❒

Theorem 17. Suppose that j = 2 and let H be any quorum induced by deleting i vertices from Km⋅2
d,

0 ≤ i ≤ f = d+1. If i = 0 then the radius of H equals d + m/2 . If m is odd and i = 1 then the
radius of H is at least d + m/2. Otherwise, the radius of H is at least d + m/2 - 1.

Proof. If i = 0 then H = Km⋅2
d, with radius d + m/2  by (21). If m is odd then, by (22), there remains at

least one vertex opposite to any undeleted vertex u as long as the number of deleted vertices is less than 2.
For the remaining cases note that (28) is satisfied when j = 2. ❒

Theorem 18. For positive integer m ≥ 3 let H be any quorum induced by deleting i vertices from
K2

1(2m+1), 0 ≤ i ≤ f = 2. If i = 0 then the radius of H equals 1+ m/2 . If m is odd and
i = 1 then the radius of H is at least 1+ m/2 . Otherwise, the radius of H is at least m/2 .

Proof. By the procedure on page 24, K2
1(2m+1) may be formed by inserting an (m+1)st vertex z″ between

the mth and zeroth vertices, x″ resp. w″, in one of the cycles C ″ of Km⋅2
d, and connecting z″ to the mth ver-

tex x′ in the other cycle C ′. The distance from the edge (x″, z″) to any other vertex v of K2
1(2m+1) equals

the distance from x″ to v in Km⋅2
d. For any vertex u ≠ x″, u ≠ z″, the distance from u to other any vertex v of

K2
1(2m+1) is at least as great as the respective distance in Km⋅2

d. Therefore, the radius of any quorum of

K2
1(2m+1) is at least as great as that of Km⋅2

d. Equality follows at i = 0 by Theorem 14. ❒

For j ≥ 3, d ≥ 3, and m ≥ 4, Theorems 12 and 16 imply that the radius of any quorum H induced by deleting
i vertices from Km⋅j

d equals d + m/2 whenever 0 ≤ i ≤ d(j-1)-1. However, for i = d(j-1)+1 there is a gap
of about  m/2  between the upper and lower bounds of Theorems 12 and 16. Let us narrow this gap.

Theorem 19. Suppose that j ≥ 3 and let H be any quorum induced by deleting i vertices from Km⋅j
d,

0 ≤ i ≤ d(j-1)+1 = f . If 0 ≤ i ≤ d-1 then the radius of H is at most d + m/2 . If i = d  then the
radius of H is at most d + max(2, m/2). If d+1 ≤ i ≤ d(j-1)+1 = f  then the radius of H is at
most d + m/2 + 1.

Proof. Since i ≤ d(j-1)+1 = f , any quorum has at least one basic cycle C ′ containing all of its original ver-
tices. To see this note that



X2000 Bus Fault Tolerance 3.4 Quorums from K-cube-connected Cycles

L. E. LaForge, revision 18-Oct-1999 35 Jet Propulsion Laboratory document JPL D-16485

[d(j-1)+2] / j d ≤ 1 (29)

whenever j ≥ 3 and d ≥ 1 (by differentiation, the lefthand side of (29) decreases with increasing j and d).
Let u ′ be any vertex of C ′, and consider any other vertex v in H. If v is in C ′ then <u,v> ≤ m/2 and the
theorem holds. Otherwise, v=v ″ resides in some other basic cycle C ″, some of whose vertices may have
been deleted. In Km⋅j

d, v ″ has two neighbors w ″ and z″ (one of which may be a counterpart u ″ to u ′ ). Let

v ′, w ′, and z ′ be the vertices of C ′ whose labels have the same low order digit as v ″, w ″, and, respec-
tively, z″. Without loss of generality assume that the shortest path Pu′, w′∈C ′ between u ′ and w ′ is no

longer than the shortest path Pu′, z′∈C ′ between u ′ and z ′. By Theorem 8, there are d(j-1) paths between v ′
and v ″, w ′ and w ″, and z′ and z″, with the length of each path at most d+1. Moreover, these paths are pair-
wise interior-disjoint. For each of these three pair of vertices, Theorem 8 guarantees that d of the d(j-1)

paths have length no greater than d. For 0 ≤ i ≤ d-1, we can always reach v ″ from u ′ by taking a shortest
path Pu′, v′, of length at most m/2 , to v ′, thence via one of the remaining paths between v ′ and v ″ of
length d. Thus, for 0 ≤ i ≤ d-1, the radius of H is at most d + m/2.

For i ≥ d note that neither Pu′, w′ nor Pu′, z′ has length greater than m/2 . Moreover, the length of Pu′, w′
equals m/2 if and only if m = 3 and u ′=v ′. The dth vertex deleted may be w ″ itself, or it may lie along
one of d shortest interior-disjoint paths between v ′ and v ″ ; however, these events are mutually exclusive.
That is, either there is a path Pu′, v′ thence to v ″, or there is a path Pu′, w′, thence to w ″, thence (via a single

edge) to v ″. In other words, for i = d  there remains between u ′ and v ″ a path of length at most
d + max(2, m/2 ) . In addition to the d+1 paths of length d + m/2 or d + max(2, m/2 ) , there are
d(j-2)+1 paths (including one that traverses Pu′, z′) of length at most d + m/2 + 1. Therefore, for
d+2 ≤ i ≤ d(j-1)+1 = f  the radius of H is at most d + m/2 + 1. ❒

Theorem 19 tightens to d + m/2 + 1 the upper bound d + m - 1 obtained directly from Theorem 12 at
i = d(j- 1)+1 = f . Extending Theorem 13:

Theorem 20. Suppose that j = 2, d ≥ 2 and let H be any quorum induced by deleting i vertices from Km⋅2
d,

0 ≤ i ≤ d+2 = f . If 0 ≤ i ≤ d-2 then the radius of H is at most d + m/2 . If i = d - 1 then the
radius of H is at most d + max(2, m/2). If d ≤ i ≤ d+1 = f  then the radius of H is at most
d + m/2 + 1.

Proof. Since i ≤ d+1 = f , any quorum has at least one basic cycle C ′ containing all of its original vertices. 
To see this note that  [d+2] / 2 d ≤ 1 (30)

whenever d ≥ 2 (by differentiation, the lefthand side of (30) decreases with increasing d). Let u ′ be any
vertex of C ′, and consider any other vertex v in H. If v is in C ′ then <u,v> ≤ m/2 and the theorem holds.
Otherwise, v=v ″ resides in some other basic cycle C ″, some of whose vertices may have been deleted. In
Km⋅j

d, v ″ has two neighbors w ″ and z″ (one of which may be a counterpart u ″ to u ′ ). Let v ′, w ′, and z ′ be

the vertices of C ′ whose labels have the same low order digit as v ″, w ″, and, respectively, z″. Without loss
of generality assume that the shortest path Pu′, w′∈C ′ between u ′ and w ′ is no longer than the shortest path

Pu′, z′∈C ′ between u ′ and z ′. By Theorem 9, there are d paths between v ′ and v ″, w ′ and w ″, and z′ and
z″, with the length of each path at most d+1. Moreover, these paths are pairwise interior-disjoint. For each
of these three pair of vertices, Theorem 9 guarantees that d-1 of the d paths have length no greater than d.
For 0≤ i ≤ d-2, we can always reach v ″ from u ′ by taking a shortest path Pu′, v′, of length at most m/2 ,

to v ′, thence via one of the remaining paths between v ′ and v ″ of length d. Thus, for 0≤ i ≤ d-2, the radius
of H is at most d + m/2 .
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For i ≥ d-1 note that neither Pu′, w′ nor Pu′, z′ has length greater than m/2 . Moreover, the length of Pu′, w′
equals m/2 if and only if m=3 and u ′=v ′. The dth vertex deleted may be w ″ itself, or it may lie along
one of d shortest interior-disjoint paths between v ′ and v ″ ; however, these events are mutually exclusive.
That is, either there is a path Pu′, v′ thence to v ″, or there is a path Pu′, w′, thence to w ″, thence (via a single

edge) to v ″. In other words, for i=d-1 there remains between u ′ and v ″ a path of length at most
d + max(2, m/2 ) . In addition to the d paths of length d + m/2 or d + max(2, m/2 ) , there are 2
paths (including one that traverses Pu′, z′) of length at most d + m/2 + 1. Therefore, for d ≤ i ≤ d+1 = f
the radius of H is at most d + m/2 + 1. ❒

Theorem 20 tightens to d + m/2 + 1 the upper bound d + m -1 obtained directly from Theorem 13 at
i = d+ 1 = f . Let us formulate analogous results for j = 2, d = 1. This case is relatively important since it
pertains to what is arguably the most practical graph architectures for X2000 avionics (cf. Section 3.10).

Theorem 21. Let H be any quorum induced by deleting i vertices from Km⋅2
1, 0 ≤ i ≤ 2 = f . The radius of

H is at most 1+ m/2 .

Proof. By Theorem 17, it suffices to consider the cases 1≤ i ≤ 2 = f . Delete a single vertex u  from the
basic cycle C ′ that originally contains u = u ′. For a root let v = v ″ be any vertex in C ″ (there may be
another) that is opposite to u ′. In the quorum formed by deleting u ′, the distance from v ″ to any other ver-
tex is at most 1+ m/2  (m/2  if m is even). This bound is preserved if we delete a second vertex
w = w ′ from C ′, so it remains to consider the deletion of a second vertex w=w ″ from C ″. In this case let
the root v = v ′ be a vertex in C ′ that (with respect to C ′) is opposite to u ′. Between v ′ and any other ver-
tex z ′ in C ′ there is a path of length at most m/2 (m/2 - 1 if m is even) strictly within C ′. With z″ the
counterpart in C ″ of z ′ in C ′, there is a path via z ′ of length at most 1+ m/2 (m/2  if m is even)
between v ′ and z″. This applies to very vertex of C ″, with the possible exception of z″ = u ″ ≠ w ″, an
undeleted vertex which (since u ′ is deleted), has no counterpart in C ′. Vertex u ″ originally has two neigh-
bors in C ″, at most one of which w ″ has been deleted, and at least one of which x″ remains undeleted. If m

is even then in C ′ the neighbors of u ′ (one of which is the counterpart x ′ of x″) are distance m/2 - 1
from v ′. Therefore, a (shortest) path in C ′ from v ′ to x ′, followed by (x ′, x″) ∪ (x″, v″), has length
1 + m/2 . If m is odd then x ′ lies at distance m/2 - 1 or m/2  from v ′. If the former then traverse the
1 + m/2  edges of the (shortest) path in C ′ from v ′ to x ′, followed by (x ′, x″) ∪ (x″, v″). If the latter
then, as shown in Figure 18, v ′ has a neighbor r ′ in C ′ that (with respect to C ′) is also opposite to u ′ (r ′ is
also opposite to the counterpart w′ of w″). Letting r ′ be the root reduces to the former case. In particular,
traverse the 1+ m/2 edges of the (shortest) path in C ′ from r ′ to x ′, followed by (x ′, x″) ∪ (x″, v ″).❒

Figure 18: Illustration of the last case of the proof of Theorem 21.

C ′ 
C ″ 

Pv′, y′ has length m/2 - 1 Pv′, x′ ∪ (x′, x″) has length 
2 + m/2

Pr′, x′ ∪ (x′, x″) has length 
1 + m/2

u′ (deleted) 

w′ (may be v′) 

v″

x″ 

u″ (not deleted) 

r″

 v′
(opposite u′)

w″
(deleted, may be v″)

x′
(may be r′)

r′
(opposite u′ and y′)
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Theorem 22. Let H be any quorum induced by deleting i vertices from K2
1(2m+1), 0 ≤ i ≤ 2 = f . If i ≤ 1

then the radius of H is at most 1+ m/2 . Otherwise, the radius is at most 1+ (m+1)/2 .

Proof. By Theorem 18, it suffices to consider the cases 1≤ i ≤ 2 = f . Suppose we delete a single vertex u

from the basic cycle C ′ that originally contains m vertices, including u = u ′. This splits C ′, but leaves

Underlying
K-cube
Kj

d(n)

Number i 
of vertices

deleted

Radius, as a function of the number i of vertices
deleted, 0≤ i ≤ f = 1 + (j-1)⋅logj (n/m)

Number i 
of vertices

deletedAt least At most

radix j = 2,
dimension

d = 1
= log2 (n/m)

number of
vertices

n = 2m even

0,
1 (if m is odd)

1 + m/2
equality by Equation (22), Theorems 17 and 21

0,
1 (if m is odd)

1 (if m is even),
2

m/2
Theorem 17

1 + m/2
Theorem 21

1 (if m even),
2

radix j = 2,
dimension

d = 1
= log2 (n/m)

number of
vertices

n = 2m+1 odd

0,
1 (if m is odd)

if m = 2 then 1; else 1+ m/2
equality for m > 2 by Theorems 18 and 22

0, 1 (if m is odd)
2 (if m = 2)

1 (if m is even),
2

m/2
Theorem 18

1 + m/2
Theorem 22 1 (if m even)

1 + (m+1)/2
Theorem 22 2 (if m > 2)

radix j = 2,

dimension d
= log2 (n/m)≥ 2

number of
vertices n = m⋅2d

0,
1 (if m is odd)

m/2 + log2 (n/m)
equality by Equation (22), Theorems 17 and 20

0,
1 (if m is odd)

1 (if m is even),
from 2 to

1 + log2 (n/m)

m/2 - 1 + log2 (n/m)
Theorem 17

m/2 + log2 (n/m)
1 (if m is even),

from 2 to
[log2 (n/m)] - 2

max(2, m/2 )
+ log2 (n/m)
Theorem 20

[log2 (n/m)] - 1

1 + m/2 + log2 (n/m)
Theorem 20

log2 (n/m),
1 + log2 (n/m)

radix j ≥ 3

dimension
d = logj (n/m)

number of
vertices n = m⋅j d

from 0 to
[logj (n/m)] - 1

m/2 + logj (n/m)
equality by Equation (22), Theorems 16 and 19

from 0 to
[logj (n/m)] - 1

from logj (n/m) to
[(j-1)⋅logj (n/m)] - 1

m/2 + logj (n/m)
Theorem 16

if d = logj (n/m)= 1
then 1+ m/2
else max(2, m/2 )

 + logj (n/m)
    Theorems 19 and 27

logj (n/m)

(j-1)⋅logj (n/m),
1 + (j- 1)⋅logj (n/m)

(m odd)
if d = logj (n/m)= 1
then 1+ m/2
else 1 + m/2

         + logj (n/m)
    Theorems 19 and 27

from
1 + logj (n/m)

to
1 + (j- 1)⋅logj (n/m)

(j-1)⋅logj (n/m),
1 + (j- 1)⋅logj (n/m)

(m even)

m/2 - 1 + logj (n/m)
Theorem 16

Table 11: Radius of quorums induced from d-dimensional j-ary K-cube-connected cycles Kj
d(n).
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intact the other basic cycle C ″. For a root let v=v ″ be a vertex in C ″ (there may another) whose counter-
part in C ′ is, with respect to C ′, opposite to u ′. In the quorum formed by deleting u ′, the distance from v ″
to any other vertex z″ in C ″ is at most (m+1)/2 . Otherwise, by traversing the shortest path in C ″ from
v ″ to z″, and thence the edge (v ″, z ′) we can reach any vertex z ′′ in C ′ by a path whose length is at most
1 + m/2 . These bounds on distance are preserved if we delete a second vertex from C ′.

Suppose instead that we delete a single vertex v = v ″ from the basic cycle C ″ that originally contains m+1
vertices, including u=u ″. For a root let v = v ′ be the mth vertex (whose label has low order digit m-1) in
C ′. Noting that v ′ has two neighbors in C ″, it follows that the distance from v ′ to any other vertex is at
most 1+ m/2 . Hence when i = 1 the radius of K2

1(2m+1) is at most 1+ m/2 . These bounds on dis-

tance on distance are preserved if we delete a second vertex from C ″. It remains to consider the case where
we delete one vertex u ′ from C ′ and one vertex w ″ from C ″.

Let the root v = v ′ be a vertex in C ′ that (with respect to C ′) is opposite to u ′, and suppose that u ′ is the
not the mth vertex in C ′ (i.e., prior to being deleted, u ′ has only one neighbor in C ″). Between v ′ and any
other vertex z ′ in C ′, there is a path of length at most m/2 (m/2 - 1 if m is even) strictly within C ′.
With z″ the counterpart in C ″ of z ′ in C ′, there is a path via z ′ of length at most 1+ m/2 (m/2  if m is
even) between v ′ and z″. As in Theorem 21, this applies to every vertex of C ″, with the possible exception
of z″ = u ″ ≠ w ″, an undeleted vertex which (since u ′ is deleted), has no counterpart in C ′. Vertex u ″ has
two neighbors x″, y″ in C ″, at least one of which x″ remains undeleted. If m is even then in C ′ the two
neighbors of u ′ (one of which is the counterpart x ′ of x″) are distance m/2 - 1 from v ′. Therefore, a
(shortest) path in C ′ from v ′ to x ′ followed by (x ′, x″) ∪ (x″, v″) has length 1+ m/2 . If m is odd then
x ′ lies at distance m/2 - 1 or m/2  from v ′. If the former then traverse the 1+ m/2  edges of the
(shortest) path in C ′ from v ′ to x ′, followed by (x ′, x″) ∪ (x″, v″). If the latter then, as shown in Figure 18,
v ′ has a neighbor r ′ in C ′ that (with respect to C ′) is also opposite to u ′ (r ′ is also opposite to the counter-
part y′ of y″). Letting r ′ be the root reduces to the former case. In particular, we traverse the 1+ m/2
edges of the (shortest) path in C ′ from r ′ to x ′, followed by (x ′, x″) ∪ (x″, v″).

Finally, suppose that in C ′ we delete the mth vertex u ′, (i.e., the low order digit on the label of u ′ equals
m-1 and, prior to being deleted, u ′ has two neighbors in C ″). Delete arbitrary vertex y ″ in C ″, and let u ′
be a vertex in C ′ that (with respect to C ′) is opposite v ′. Between v ′, and any other vertex z ′ in C ′, there
is a path of length at most m/2 (m/2 - 1 if m is even), strictly within C ′. With z″ the counterpart in
C ″ of z ′ in C ′, there is a path via z ′ of length at most 1+ m/2 (m/2 if m is even) between v ′ and z″.
This applies to every vertex of C ″, with the exception of the mth or (m+1)st vertices u ″ resp. s″, whenever
one or both of u ″ and s″ remain undeleted. If in C ″ neither x ″, the predecessor of u ″, nor y ″, the succes-
sor of s″, is undeleted then take as a root a vertex v ′ in C ′ that (with respect to C ′) is opposite to u ′ (i.e.,
the low order digit of v ′ is m/2  or m/2 . To reach u ″ from v ′ follow a shortest path in C ′ to x ′,
traverse the edge from x ′ to its counterpart x ″, and trace the edge (x ″, u″), a total length of 1+ m/2
resp. 1 + m/2 . Suppose on the other hand that either x ″ or y ″ is deleted, and without loss of generality
assume that x ″ remains in the quorum. Refer to Figure 19. Take as a root the vertex r ′ whose label has a
low order digit equal to 1+ m/2. To reach u ″ resp. s″ from v ′ follow a shortest path in C ′ to x ′,
traverse the edge from x ′ to its counterpart x ″, and trace the edge (x ″, u″), a total length of m/2  resp.

1 + (m+1)/2 . This leaves the successor to y ″ at distance 1+ (m+1)/2  from v ′, with all other vertices
in the quorum at a distance from v ′ less than 1+ (m+1)/2 . ❒
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Tables 11 and 12 synopsize our results for K-cube-connected cycles. With respect to radius, we see from
Table 11 that the difference between our upper and lower bounds is typically one or zero, and in no case
exceeds two. As with the case of K-cubes, we obtain lower and upper bounds on the value of
ρ(n, d(j-1)+2) by taking the maximum of the lower and upper bounds on the radius, as a function of the
number of vertices deleted. For example, if j ≥ 3, d ≥ 2, and m≥ 4 then
0 ≤ ρ(n,d(j-1)+2) - (d + m/2) ≤ 1; i.e., our estimate is within one of the maximum radius. Independent
of the choice of G, Theorem 6 tends to underestimate the value of ρ. In at least one case, however, the
lower bound of Theorem 6 is exact: ρ(6,2) ≥ 2, and this bound is achieved by Km⋅2

1, shown in Figure 20.

Figure 19: Illustration of the last case of the proof of Theorem 22.

Underlying
K-cube
Kj

d(n)

Number i 
of vertices

deleted

Diameter, as a function of the number i of vertices
deleted, 0≤ i ≤ f = 1 + (j-1)⋅logj (n/m)

At least At most

radix j = 2,

dimension
d = log2 (n/m) = 1

number of
vertices

n = 2m+1 odd

0 1 + m/2 , equality by Equation (22), Theorem 15

1
1 + m/2

Theorem 15

2 + m/2
Theorem 14

2 m+1
Theorem 14

radix j = 2,

dimension
d = log2 (n/m)

number of
vertices n = m⋅2d

0 m/2 + log2 (n/m), equality by Equation (22)

from 1 to
[log2 (n/m)] - 1

m/2 + log2 (n/m)
Theorem 15

max(2, m/2 ) + max[2, log2 (n/m)]
Theorem 13

log2 (n/m) 1 + m/2 + log2 (n/m)
Theorem 13

1 + log2 (n/m)
m -1 + log2 (n/m)

Theorem 13

radix j ≥ 3,

dimension
d = logj (n/m)

number of
vertices n = m⋅j d

0 m/2 + logj (n/m), equality by Equation (22)

from 1 to
logj (n/m)

m/2 + logj (n/m)
Theorem 15

max(2, m/2 ) + max[2, logj (n/m)]
Theorem 12

from 1+ logj (n/m)
to (j-1)⋅logj (n/m)

1 + m/2 + logj (n/m)
Theorem 12

1 + (j- 1)⋅logj (n/m) m - 1 + logj (n/m)
Theorem 12

Table 12: Diameter of quorums induced from d-dimensional j-ary K-cube-connected cycles Kj
d(n).

C ′ C ″ u′ (deleted) 

y′ (may be v′) 

v″
s″ 

v′
(opposite of u′ that is closer to x′)

y″
(deleted, may be v″)

x′
(may be r′)

r′
(distance m/2 - 2

from x′, distance
m/2 + 1 from y′) u″

(not deleted) x″ 
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3.5  Quorums from K-cube-connected Edges

This section complements the preceding by giving results for graphs whose structure lies between that of
K-cubes and K-cube-connected cycles. Refer to Figure 20. A d-dimensional j-ary K-cube-connected edge
of order n, denoted K2⋅j

d, is the result of replacing each of the j d vertices of Kj
d with an edge. For a basis, a

zero-dimensional K-cube-connected edge K2⋅j
0 is an edge connecting two vertices. The high order d digits

of the label on a vertex u in edge h of K2⋅j
d are identical to the d digits on the label of vertex h of the corre-

sponding Kj
d. The low order digit on u is its label in the corresponding K2⋅j

0. Vertex u shares an edge with

vertex v if and only if i)u and v are neighbors in a basic edge K2⋅j
0, or ii) the low order digits of u and v are

identical, and the high order digits differ in exactly one position. This definition gives rise to a develop-
ment analogous to that of the Section 3.4. For example, the respective counterparts to (15) and (16) are

n/2 = j d (31)

and d(j-1)+1 = f+1 (32)

On the other hand, (19) pertains intact. Except for the case n = 5, therefore, a K-cube-connected graph with
given connectivity and minimum count of edges structure cannot have as its basis a mixture of edges and
cycles. It is for this reason that we have equality in (31), and are freed from having to consider analogs to
Theorems 14, 18, and 22. If n = 5 then j = 2. When we delete i = 0, 1, 2 vertices from K2

1(5), the radius of
the resulting quorum is at least 1, 2, resp.1 and at most 2, 2, resp.2. The minimum diameter of a spanning
tree of a quorum of K2

1(5) always equals 2. For j ≥ 3 we have a counterpart to Theorems 8 and 12:

Theorem 23. (Connectivity, upper bound on diameter.) If j ≥ 3 then between vertices u and v in a K2⋅j
d

there are d(j-1)+1 interior-disjoint paths, none of whose length exceeds d + 2. The length of
d+1 of these paths is at most d + 1.

The proof of Theorem 23 is similar to those for Theorems 8 and 12; in the interest of shortening the expo-
sition we omit the details. Note that the definition of a d-dimensional binary K-cube-connected edge coin-
cides with that of a (d+1)-dimensional binary K-cube. That is, K2⋅2

d = K2
d+1, and without loss of

generality we may neglect K-cube-connected edges based on binary K-cubes. In particular, we are freed
from having to consider counterparts to Theorems 13, 17, 20, and 21.

Figure 20: K-cube-connected edges K2⋅j
d, radix j = 3. At j = 2 K2⋅2

d reduces to a binary K-cube K2
d+1.
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The recurrence of (8) pertains intact. That is, the recurrence relation for Bj(d,i,2), the number of vertices at

distance i from any vertex u in K2⋅j
d, is identical that for K-cubes (m = 1) or K-cube-connected cycles

(m ≥ 3). By comparison to (8) or (20), the case m = 2 implies slightly different boundary conditions:

Bj(d,0,2) = 1, Bj(0,1,2) = 1 (33)

For 1 ≤ i ≤ d+1, equation (21) provides the solution to the recurrence (8), with boundary conditions (33):

 (34)

where . At j= 2 equation (34) reduces to the familiar B2(d+1,i) = . Table 13 illustrates.

Equation (34) also enables proofs of analogs to Theorems 10 and 11:

Theorem 24. Let H be any quorum induced by deleting i vertices from K2⋅j
d, 0 ≤ i ≤ f = d(j-1). The diam-

eter of H is at least d+1.

Theorem 25. Let H be any quorum induced by deleting i vertices from K2⋅j
d, 0 ≤ i ≤ f = d(j-1), j ≥ 3. The

radius of H is at least d+1.

Table 14 summarizes our results for K-cube-connected edges.

↓ d j = 2 j = 3 j = 4

 → i 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 1 1 1 1 1

1 1 2 1 1 3 2 1 4 3

2 1 3 3 1 1 5 8 4 1 7 15 9

3 1 4 6 4 1 1 7 18 20 8 1 10 36 54 27

4 1 5 10 10 5 1 1 9 32 56 48 16 1 13 66 162 189 81

5 1 6 15 20 15 6 1 1 11 50 120 160 112 32 1 16 105 360 675 648 243

Table 13: Number Bj(d,i,2) of vertices at graph distance i from any other in a d-dimensional j-ary K-cube-
connected edge K2⋅j

d. The table may be verified or extended using (8) and (33), or (34). 

Number i of vertices 
deleted, 0≤≤≤≤ i ≤≤≤≤ f
f = (j-1)⋅⋅⋅⋅logj (n/2)

Radius Diameter

At least At most At least At most

from 0
to logj (n/2)

1 + logj (n/2)
Theorems 23 and 25

1 + logj (n/2)
Theorems 23 and 24

from 1 + logj (n/2)
to (j-1)⋅logj (n/2)

1 + logj (n/2)
Theorem 23

if d = logj (n/2) = 1
then 2
else 2 + logj (n/2)
    Theorems 23 and 27

1 + logj (n/2)
Theorem 24

2 + logj (n/2)
Theorem 23

Table 14: Properties of quorums induced by deleting vertices from K-cube-connected edges K2⋅j
d, j ≥ 3.

Bj d i 2, ,( ) Bj d i,( ) B+
j

d i 1–,( ) j 1–( ) i d
i 

  j 1–( ) i 1– d
i 1– 

 += =

d
d 1+ 

  0= d 1+
i 

 
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3.6  Chordal Graphs and Cycles of K-cubes

This section by gives a partial characterization of the chordal graphs alluded to on page 9. Our results will
be sufficient to motivate modification of these chordal graphs. The modified graphs turn out to be a cycles
of cliques, a class of graphs that we have already studied.

Refer to Figure 21A. For odd 2q-1 = f ≥ 3, the chordal graphs Cn,2q of [Hayes 1976] prescribe that each
vertex is connected to 2q ≤ n-1 closest vertices along a cycle Cn. By Theorem 4 of [Hayes 1976], Cn,2q is
2q-connected, and hence yields a quorum in the presence of any 2q-1 partitioning faults. But what are the
radius and diameter of such a quorum? As illustrated by Figure 21B, Cn,2q can be modified in a fashion
that appears to reduce the radius of an induced quorum. For the sake of clarity we call these modified struc-
tures secant graphs. For n = m⋅f, a secant graph C(m⋅f) is formed as follows. Divide the vertices into m
classes, labeled from 0 to m-1. The index of a vertex’s class is the high order digit on its label. Within each
class, number the vertices from 0 to f - 1. The index of a vertex within any class is the low order digit on its
label. Connect vertex i to vertex [i+ 1 mod n]. Connect two vertices whenever their low order digit is the
same. Let us confirm that, in fact, the maximum radius of a quorum induced by deleting up to f vertices of
C(m⋅[2q-1]) is less than that for Cm⋅(2q-1),2q, where f = 2q-1.

First note that the definition of C(m⋅f) coincides with that for Km⋅f
1; that is, C(m⋅f) is a clique of cycles of

length m. As drawn in Figure 21B, C(m⋅f ) appears to the eye as a (three) cycle of (three-vertex) cliques. No
matter how we draw a graph, however, its adjacency remains unchanged. More generally, if we make m
copies of a d-dimensional j-ary K-cube Kj

d, and then connect corresponding vertices of these K-cubes into
a single cycle, we have the same result as if we had replaced every vertex in Kj

d by a Cm and connected the
cycles according to the procedure on page 24. Let us record this observation as

Theorem 26. A cycle of m K-cubes Kj
d is identical to a K-cube of cycles Km⋅f

d. In particular, a secant
graph C(m⋅f) is a cycle of m cliques Kf .

To effectively compare Cm⋅(2q-1),2q with C(m⋅[2q-1]) we refine the result of Theorems 19 and 20 via what
amounts to an extension of Theorem 5.

Theorem 27. For m ≥ 2 and 0≤ i ≤ f = j - 1 + min(1, (m-1) /2), let H be any quorum induced by deleting
i vertices from C(m⋅f) = Km⋅j

1. The radius of H is at most 1+ m/2.

Proof. Suppose first that m = 2; that is, we have a quorum induced from a K-cube-connected edge. Since
i ≤ j-1, there remains at least one edge that spans the two j-ary cliques. Pick any vertex u from such an
edge. To reach any other vertex v traverse at most one edge to reach the Kj (perhaps with one of more of its
vertices deleted) to which v belongs. By Theorem 5, whatever remains of Kj affords an edge from the coun-
terpart of u in v’s Kj to v. The length of the path between u and v is at most 2= 1 + m/2.

Suppose on the other hand that m ≥ 3; that is, we have a quorum induced from a K-cube-connected cycle.
If there is a basic cycle from which a vertex has not been deleted then pick any vertex u from such a basic

Figure 21: Chordal graph architecture Cn,2q versus secant graph architecture C(m⋅f); n=9, q=2, f=3, m=3.
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cycle. To reach a destination vertex v traverse the basic cycle of which u is a member, in at most m/2
edges, arriving at the j-ary clique Kj to which v belongs. By Theorem 5, whatever remains of Kj affords an
edge that joins the counterpart of u in v’s Kj to v. The path between u and v has length at most 1+ m/2 .
If there is no basic cycle from which a vertex has not been deleted then i = f = j  and every basic cycle has
exactly one vertex deleted from it. Pick any central vertex u from such a basic cycle. If the destination ver-
tex v is in a clique other than that to which u belongs then assume that the counterpart of v in the clique of
which u is a member has not been deleted. To reach v traverse the basic cycle of which u is a member, in at
most m/2  edges, arriving at the j-ary clique Kj to which v belongs. By Theorem 5, whatever remains of
Kj affords an edge that joins the counterpart of u in v’s Kj to v. The path between u and v has length at most
1 + m/2 . Finally, assume that v is in a clique other than that to which u belongs, and that the counterpart
of v in the clique of which u is a member has been deleted. To reach v traverse the basic cycle of which u is
a member, in at most m/2 - 1 edges arriving at w, the neighbor of v’s closest counterpart to u in this
cycle (that we can do this is assured since the counterpart of v is the only vertex deleted from the cycle). If
in v’s clique the counterpart to w has not been deleted then trace the edge from w to its counterpart, thence
the edge to v. If in v’s clique the counterpart to w has been deleted then, as in Theorems 21 and 22, go from
u to z, the other neighbor of the counterpart of v in the basic cycle of which u is a member, to the counter-
part of w in v’s clique, to v. The length of this path between u and v is at most 1+ m/2 , which equals
1 + m/2  if m is even. If m is odd then there is a second central vertex x in u’s basic cycle; x is closer by
one edge to w. In this case the distance from x to any other vertex is at most 1+ m/2 . ❒

Theorem 28. In Cm⋅(2q-1),2q the distance between vertex 0 and vertex i equals min(  i /q , (n-i) /q).

Proof. Let u and v be the vertices in Cm⋅(2q-1),2q whose respective labels are 0 and i. Assume, as in
Figure 21A, that the vertices of Cm⋅(2q-1),2q are labeled clockwise in ascending order. Any shortest path
between u and v is either strictly clockwise or strictly counterclockwise. Therefore, any minimum length
path from u to v is a minimal length path, in the sense described by [Bollabás, 1978], p. xvi. From u to v let
P be a path of clockwise length i or counterclockwise length n-i along the perimeter of Cm⋅(2q-1) ,2q. In a
greedy fashion, replace a longest subpath of P with a single edge. Iterating on this procedure yields shortest
clockwise and counterclockwise paths. Clockwise, we replace q edges with a single edge a total of  i /q
times, and, if i ≠ 0 mod q, substitute a single edge for i mod q edges. Counterclockwise, we replace q edges
with a single edge a total of (n-i) /q times, and, if n-i ≠ 0 mod q, substitute a single edge for n-i mod q
edges.Therefore the length of the shortest path between u and v equals min( i /q , (n-i) /q ). ❒

The distance prescribed in Theorem 28 is maximized when i = n/ 2 or, if n is odd, when i = n /2 or
 n /2. Since max0<i<n  min(  i /q , (n-i) /q) = min [ max0<i<n (  i /q), max0<i<n ((n-i) /q) ], we have

Corollary 28.1. The radius of Cm⋅(2q-1) ,2q = Cn,2q is m⋅(2q-1)/2 /q = n /2 /q .

Recall from the beginning of Section 3.1 that we are interested in minimizing the maximum radius of a
quorum. By Theorem 27, the radius of C(m⋅[2q-1]), and of any quorum of C(m⋅[2q-1]), equals 1+ m/2 .
To establish that C(m⋅[2q-1]) is preferred to Cn,2q it therefore suffices to exhibit a quorum of Cm⋅(2q-1),2q
whose radius is greater than 1+ m/2 . In particular, this applies in the case of zero faults, whence Corol-
lary 28.1 pertains and the quorum is itself Cm⋅(2q-1) ,2q. When m ≥ 4 and q ≥ 3, we have

(q+1)/(q-1) ≤ m/2 (35)

Multiply (35) by q-1 and add mq-1: q(1 + m/2)  ≤  q(1 + m/2) ≤  m(q +½) - 1 ≤ m⋅(2q-1)/2 (36)

Multiply (36) by 1/q: 1 + m/2  ≤ m⋅(2q-1)/2 /q ≤ m⋅(2q-1) /2 /q = n /2 /q (37)

Thus when m ≥ 4 and q ≥ 3 the radius of C(m⋅[2q-1]) is no greater than that of Cm⋅(2q-1),2q. Similar manip-
ulations reveal that (37) holds when m ≥ 6 and q = 2, when m = 3 and q ≥ 2, when m = 4 and q = 2, and
when m = 5 and q = 2. Refined estimates and substitutions establish that the lefthand side of (37) is, in fact,
strictly less than the righthand side whenever m ≥ 3 and q ≥ 3, or when m ≥ 6 and q = 2. In summary:
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Corollary 28.2. Over the range 0≤ i ≤ f = 2q -1, the maximum radius of a quorum obtained by deleting i
vertices from the secant graph C(m⋅[2q-1]) = Km⋅f

1 never exceeds the maximum radius of a quorum
obtained by deleting i vertices from the chordal graph Cm⋅(2q-1) ,2q. In particular, when i= 0 and either m ≥ 3

and q ≥ 3 or m ≥ 6 and q = 2, the radius of C(m⋅[2q-1]) = Km⋅f
1 is strictly less than that of Cm⋅(2q-1),2q.

In this section we have examined and contrasted chordal graphs along with secant graphs. A secant graph
is constructible whenever the number of faults f divides the total number n of nodes and is, in fact, a one-
dimensional K-cube-connected cycle. From the viewpoint of minimizing the maximum radius of quorum,
a secant graph is at least as good, and generally better, than a chordal graph. We have not carried our com-
parison to the case of an even number of faults. Moreover, chordal graphs are constructible for any value of
f < n,19 while secant graphs are constructible if and only if f divides n. Nevertheless, our analysis provides
a basis for preferring K-cube-connected cycles to chordal graphs, and this is our recommendation.

3.7  Quorums from C-cubes

Often referred to in the literature as a "hypercube" or simply a "cube", a labeled d-dimensional j-ary
C-cube Cj

d is constructed as follows.20 For j = 2: C2
d is a d-dimensional binary K-cube K2

d (equivalently,

a (d-1)-dimensional binary K-cube-connected edge K2⋅2
d-1); for j = 4: C4

d is a K2
2d (proof by induction);

binary cubes are characterized by Section 3.3. For j > 2: Cj
0 is a single unlabeled vertex. Cj

1 is a cycle
(Section 3.1) on j vertices, numbered circularly from 0 to j-1; two vertices are joined by an edge if and only
if the modulo j difference in their labels equals ±1. Note that a one-dimensional j-ary C-cube Cj

1 is the

same as a j-vertex zero-dimensional j-ary K-cube-connected cycle Kj⋅j
0. In general, to construct Cj

d we

i) make j copies of Cj
d-1; ii) prepend i to the label of each vertex of the ith copy of Cj

d-1; iii) connect with

an edge vertices u and v (from different copies of Cj
d-1) if and only if the the modulo j difference in the

high order digits of the labels on u and v equals ±1, and the low order d-1 digits are identical. Alternatively,
we can reserve d digits for the label on each vertex, thus giving to rise a construction that is independent of
the order in which dimensions are populated. Figure 7 illustrates 4-ary and ternary C-cubes in 2 resp. 3
dimensions. Note that, since a cycle on three vertices is also a three-vertex clique, C3

d = K3
d (equivalently,

a (d-1)-dimensional ternary K-cube-connected cycle K3⋅3
d-1); these are characterized by Section 3.3. It suf-

fices therefore to consider dimensions d ≥ 2 and radices j ≥ 5, and such is the focus of this section. 

19. K-cube-connected cycles and chordal graphs of order n and having the least resp. greatest number of edges per
vertex are the same as cycles resp. cliques. I.e., Kj

0(n) = Cn,2 = Cn resp. Kn
1(n) = Cn,n-1 = Kn.

20. We use a "C" to preface the term for a cube Cj
d that is based on cycles, as opposed to a clique-based (K-)cube;

with respect to the latter, the K derives (cf. Section 3.7) from notation for a j-vertex clique Kj.

Figure 22: Labeling and connectivity for a C4-cube and C3-cube =K3
3 in two resp. three dimensions.
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As with K-cubes, it is useful to know salient properties of C-cubes. Some (but not all) of these properties
are listed in [Zargham 1996] (p. 204). Recalling that the radix j is greater than four, let us establish results
pertaining to these properties. By step (i) on the preceding page, Cj

d contains j copies of Cj
d-1; therefore the

order nC(d, j) of Cj
d equals j⋅nC(d-1, j). Subject to the initial condition nC(0, j) = 1, verify that the unique

solution of this recurrence relation is the same as that (5) for the number of vertices in a j-ary K-cube:

nC(d, j) = j d (38)

By step (iii) on the preceding page, the degree of a vertex in Cj
d equals its degree in Cj

d-1 plus 2, the

number of edges that connect it to vertices with the same labels in neighboring copies of Cj
d-1. Subject to

the initial condition of zero edges in Cj
0, the degree of each vertex in Cj

d is therefore 2d (39)

Summing (39) over all j d vertices counts every edge twice. Hence the number eC(d, j) of edges in Cj
d is

eC(d, j) = d⋅j d (40)

As is the case with K-cubes (as well as edges and cycles of K-cubes), C-cubes are vertex symmetric.14

Moreover, and as illustrated by Figure 22, the vertices of Cj
d are in one-to-one correspondence with

ordered d-tuples, each of whose coordinates is a nonnegative integer. This suggests that, if two vertices
u = (ud-1, … , u0) and v = (vd-1, … , v0) are sufficiently close, their distance should be given by the L1

metric (also known as the city block, or Manhattan metric): (41)

This tendency is born out by the L1 "modulo j" metric of (42). By analogy with Theorem 7:

Theorem 29. If u and v are vertices of Cj
d, labeled according to steps (i) – (iii) on page 44, then

(42)

Proof. Regard arbitrary vertices u and v in Cj
d. Since Cj

d is vertex symmetric, we can assume without loss
of generality that u = (0, … , 0) = 0. By step (iii) on page 44, we must traverse at least min(vk, j-vk) edges

along the ith axis. Thus the distance from 0 to v is at least (42). Further, and again by the construction on
page 44, this bound is achieved by traversing vk edges in the positive direction of the ith axis (ifvk ≤ j-vk) or

(if vk > j-vk) by traversing j-vk edges in the negative direction of the ith axis. ❒

Equation (42) is maximized when the respective terms in the summation are maximized. That is, when
vk =  j / 2 , for all k ranging between 0 and d - 1. It immediately follows:

Corollary 29.1. The radius and diameter of Cj
d are identically d⋅ j / 2.

Corollary 29.1 addresses the case of a Cj
d without faults. To derive a lower bound on radius, consider the

number Bj
C(d,i) of integer lattice points on the surface of, as well as the total number Vj

C(d,i) in, a closed

ball of L1 modulo j radius i. By Corollary 29.1 and equation (42), we know thatVj
C(d,d⋅ j / 2) = j d (43)

For the sake of visualization assume that j is odd; translate the labels of Cj
d so that the point  ( (j-1)/2, … ,

(j-1)/2) becomes the origin. By (42), any point v in the ball of interest belongs to an L1 ball centered at the
new origin, as long as all of the (translated) coordinates of v satisfy vk ≤ (j-1)/2. Let us establish the vol-
ume and surface area of such a ball. If the radius i equals 0 then the ball contains just the origin, which is

<u v>1, uk vk–
k 0=

d 1–

∑=

<u v>mod j, min uk vk– j uk vk––,( )
k 0=

d 1–

∑=
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also on the surface in the sense that it is the number of points exact distance 0 from the center. Adopting
the latter definition:

Bj
C(0,0) = Vj

C(d,0) = 1 (44)

At the outset it is not clear what meaning we should accord the surface area of zero-dimensional ball with
positive radius. However, if we hold strictly to the definition used for (44) then the surface area of a zero-
dimensonal ball equals zero whenever i > 0: 

Bj
C(0, i > 0) = 0 (45)

whence  Vj
C(0, i) = 1 (46)

Refer to Figure 23. Equations (44), (45), and (46) are consistent with the one-dimensional case
Bj

C(0, i) = 2 and Vj
C(0, i) = 2i+ 1 (which could have served as boundary conditions) as well as with the

respective recurrences:

Bj
C(d,i) = Bj

C(d-1,i) + 2 ∑k ≤ 0 ≤ i-1 Bj
C(d-1,k) = Bj

C(d-1,i) + Bj
C(d-1,i-1) + Bj

C(d,i-1) (47)

Vj
C(d,i) = Vj

C(d-1,i) + 2 ∑k ≤ 0 ≤ i-1 Vj
C(d-1,k) = Vj

C(d-1,i) + Vj
C(d-1,i-1) + Vj

C(d,i-1) (48)

To obtain the righthand relation we have recursively applied the lefthand side to a split sum. Table 15 illus-
trates computation of Bj

C and Vj
C, analogous to that depicted by Tables 8, 10, and 13.

Notice that the recurrence (47) for Bj
C is the same as that (48) for Vj

C, but boundary condition (45) for

Bj
Cdiffers from that (46) for Vj

C. As a result, and as illustrated in Table 15, Bj
C is asymmetric, while Vj

C is

a symmetric function of d and j. Let us use combinatorial means to solve for Vj
C. Again we focus on balls

centered at u = 0 in the translated coordinate system, and restrict the absolute value of each coordinate of v
to a value no greater than ( j-1)/2 .

Consider the 2d-tant comprising all strictly positive coordinates included in a ball of L1 radius i. The num-

ber Bj
C+ of positive integer lattice points on the surface of this ball equals the number of solutions to

(49)

Figure 23: Balls in the L1 metric: recursive composition and enumeration of volume and surface area.
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Equation (49) has ordinary generating function: (50)

By Chapter 6 of [Tucker 1984], Bj
C+(d,i) is the coefficient of xi in (50): (51)

where the righthand side makes use of the symmetry of binomial coefficients (cf. page 17). Summing over
all i yields the volume of intersection of the ball with the strictly positive 2d-tant:

(52)

The iterative simplification in (52) makes use of the recurrence relation (cf. page 17) for Pascal’s triangle.

Again recalling that each coordinate is restricted to a value no greater than (j-1)/2, let us establish (51) and
(52) by way of arguments which, unlike the preceding derivation, avoid generating functions and binomial
identities. For Bj

C+(d,i), label i tally marks with the integers from 1 to i. Tag each of d tallies, in ascending

order of tallies. Tagging the qth tally with the kth tag signifies that the value of the kth coordinate equals the
number of tallies after (k-1)st tag, up to, and including, the qth tally. Note that there an implicit tag prior to
the first tally, and that this construction assures that all coordinates are positive. For the sum of the coordi-

nates to equal i, we must tag the ith tally. This leaves  ways to distribute d-1 indistin-

guishable tags among i-1 distinguishable tallies. Since Vj
C+(d,i) corresponds to the case where the sum of

the d coordinates is at most i, we are no longer required to tag the ith tally. There are  ways to distrib-

↓ d Bj
C(d,i) Vj

C(d,i)

 → i 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 1 3 5 7 9 11 13 15

2 1 4 8 6 12 16 20 24 1 5 13 25 41 61 85 113

3 1 6 18 38 66 102 146 198 1 8 25 63 129 231 377 575

4 1 8 32 88 192 360 608 952 1 10 41 129 321 681 1289 2241

5 1 10 50 170 450 1002 1970 3530 1 12 61 231 681 1683 3653 7183

6 1 12 72 292 912 2364 5336 10836 1 12 85 377 1289 3653 8989 19825

7 1 14 98 462 1666 4942 12642 28814 1 12 113 575 2241 7183 19825 48639

Table 15: Bj
C and Vj

C count the number of vertices on the surface of, resp. included in, a closed ball
encompassing integer lattice points, each of whose distance from the center is no greater than  j / 2  = 7.

The ball has integer L1 radiusi, and is centered at a point whose coordinates correspond to a label in Cj
d.

x
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ute the d tags among the i tallies, and this is the number of positive integer vertices in a d-dimensional ball
of L1 radius i centered at the origin.

Write Vj
C±(d,i) and Bj

C±(d,i) for the number of vertices in resp. on a d-dimensional ball of L1 radius i cen-
tered at the origin, such that no coordinate is zero. The number of ways of ordering d signs (plus or minus)
equals 2d; each ordering corresponds to a 2d-tant in d-dimensional space. In consequence,

                 (53)

For any k coordinates set to zero, we have  resp.  vertices in or on a d-dimen-

sional ball of L1 radius i centered at the origin. Since there are  ways of setting k coordinates to zero,

the volume is given by

                 (54)

The righthand side of (54) explicates how is Vj
C(d,i) is symmetric with respect to i and d. This is in accor-

dance with boundary conditions (44) and (46), recurrence (48), and Table 15, but is to be contrasted with
the asymmetric solution to (53):

                 (55)

When the radius i exceeds (j-1) /2, a ball centered at the origin of Cj
d (translated) no longer includes all of

the points encompassed by the analogous ball (of identical L1 radius i ) in the d-dimensional space of points

whose coordinates are integers. For j odd, the ball of interest in Cj
d excludes those points having a coordi-

nate whose absolute value exceeds (j-1)/2; analogous to (50), the ordinary generating function is

(56)

wherein for Bj
C+(d,i) we extract the coefficient of xi. Though somewhat more complicated, the case for j

even is essentially similar. Rather than pursue this line, we focus on enumerating those points of interest:
i.e., those most distant, or most nearly distant, from any given vertex in Cj

d.

Consider points at maximum distance from the origin in an (untranslated) Cj
d , where j is even. Vertex v is

maximally distant from the origin if and only if each of the terms in (42) equals j / 2. This is possible if and
only if each coordinate of v equals j /2. Thus (j / 2, …, j/2) is the unique point at maximum distance dj/2
from the origin:

 Bj
C(d,dj/2) = 1 j even (57)

Again for the case of j even, vertex v is distance (dj/2)-1 from the origin if and only if and only if d-1 terms
in (42) equal j / 2, and one term equals (j /2)-1. The coordinate corresponding to the term whose value
equals  (j / 2)-1 has two possible values: (j / 2)-1 and (j / 2)+1. There are d ways of choosing this term, in
which case the remaining d-1 terms are determined. Thus the points at distance one less than the maximum
from the origin are those having d-1 coordinates equal to j / 2 and one coordinate equal to  (j / 2) ± 1:
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 Bj
C(d,[dj/2]-1) = 2d j even (58)

Suppose that j is odd. Vertex v is maximally distant from the origin if and only if each of the terms in (42)
equals (j-1)/2. Thus the points at maximum distance d(j-1)/2 from the origin have coordinates of the form
((j ±1)/2, …, (j±1)/2). That is:

 Bj
C(d,d(j-1)/2) = 2d j odd (59)

Let us apply the notion of opposite pairs to the case of C-cubes: u and v are opposite if their distance equals
the diameter (alternatively, the radius) d⋅ j / 2  of Cj

d. Vertices u and v are nearly opposite if their distance

is d⋅ j / 2-1, one less than the diameter (alternatively, the radius) of Cj
d.

Theorem 30. Let H be any quorum induced by deleting i vertices from Cj
d, 0 ≤ i ≤ f = 2d-1, j ≥ 5.

The diameter of H is at least d⋅ j / 2 .

Proof. Suppose j is even. By (57), any given vertex u belongs to one opposite pair. Summing over all j d

vertices counts every pair of opposites twice, and the total number of opposite pairs equals ½⋅j d. Each
vertex we delete from Cj

d removes at most one opposite pair. Therefore, there remains at least one opposite

pair as long as 4d ≤ j d (60)

which follows by noting that d ≤ 2 d-1 ≤ 5 d-1 ≤ j d-1 Suppose that j is odd. By (57), any given vertex u
belongs to 2d opposite pairs. Summing over all j d vertices counts every pair of opposites twice, and the
total number of opposite pairs equals 2 d-1j d. Each vertex we delete from Cj

d removes at most 2d opposite

pairs. Therefore, there remains at least one opposite pair as long as (2d-1)2d < 2 d-1j d (61)

which reduces to (60). ❒

Theorem 31. Let H be any quorum induced by deleting i vertices from Cj
d, 0 ≤ i ≤ f = 2d-1, j ≥ 5. If i = 0

or j is odd then the radius of H is at least d(j-1)/2. For i ≥ 1 and j is even, the radius of H is at least (dj/2)-1.

Proof. The case i = 0 is covered by Corollary 29.1. Suppose that j is odd. By (59), undeleted vertex u has
at least one opposite as long as 2d-1 < 2 d (62)

which follows by remarks following (13). Suppose that j is even. By (58), there is at least one vertex nearly
opposite to undeleted vertex u as long as 2d-1 < 2d (63)

which follows since zero is less than one. ❒

path length →  1 2 3 4 5 6 7 8 9 10       p
ath  →

  h

stage →  m

000 001 002 003 013 023 033 133 233 333 0 1 2

000 010 020 030 130 230 330 331 332 333 1 2 0

000 100 200 300 301 302 303 313 323 333 2 0 1

000 006 005 004 014 024 034 134 234 334 333 permutation 
matrix, cyclic 

group of order 3000 060 050 040 140 240 340 341 342 343 333

000 600 500 400 401 402 403 413 423 433 333

Table 16: Illustration of Theorem 32: 2d = 6 paths from the origin (0,0,0) to opposite (3,3,3) vertex in a 
three-dimensional 7-ary C-cube. Swingback paths are listed in the bottom three rows.
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Theorem 32. (C-cube connectivity, upper bound on diameter, j ≥ 5.) If v lies at distance i > 0  from vertex
u of Cj

d then between u and v there is a set of 2d interior-disjoint paths. Let q be the number of coordi-
nates where u and v are identical. i)  d-q of these paths P(0) … P(d-q-1) have length i; ii) 2q of these paths
P(d-q) … P(d+q-1) have length i+2. For 0≤ r ≤ d-q-1, let cr

+ denote the value of 

that is no larger than any set of d-1-r other such c+ ’s, (cf. (64)) with the ordering ranging over
0 ≤ k ≤ d-1. iii) Of the remaining d-q paths P(d+q) … P(2d-1), path P(d+q+r) traverses i+2cr

+- j edges.

Proof. By induction on d. As a basis take d = 1. Since Cj
d is vertex symmetric we can, without loss of gen-

erality, suppose that u0 = 0 and v0 = i. For property (i), trace from u to v a path P(0) of minimum length i
by traversing i edges along the cycle. Property (ii) holds since q is necessarily 0. For (iii), trace from u to v
a path P(1) in a direction opposite to, and interior-disjoint with, P(0); note that c0

+ = j-i , and that

P(1+0-1+1) = P(1) has length j-i = i+ 2j-2i- j = i +2c0
+- j . The theorem holds at d = 1.

Assume that the theorem holds in 0, … (d-1) dimensions, and regard arbitrary vertices u and v in Cj
d, d >1,

j ≥ 4. Suppose that q = 0; i.e., the coordinates of u and v differ in all d dimensions.

i) For the 0th coordinate, trace a shortest path P ′(0), of length min(|u0-v0|, j-|u0-v0| ), from u to

(ud-1, … , v0). By induction, the Cj
d-1 prescribed by setting the 0th coordinate to v0 contains a path P ″(0)

from (ud-1, … , v0) to v, and this path traverses i-min(|u0-v0|, j-|u0-v0| ) edges. Catentating P ′(0) with

P ″(0) gives an i-edge path P(0) from u to v. For h = 1, … d-1, iterate this process to synthesize path P(h):
at the start of the hth iteration rotate each coordinate value by adding it to h, and converting the sum to its
principal value mod d. As illustrated by the righthand side of Table 16, this completes a symmetric permu-
tation matrix for the cyclic group of order d [Artin 1975] (VII:1.4). At h = 2, for example, coordinates
along the path change in the order  2, …,d-1, 0, 1. With respect to any vertex along a path, define the stage
to be the number m of different coordinates that have changed; q = 0 implies 0≤ m ≤ d-1. Entry (h, m) of
the permutation matrix equals (h+m) mod d. Consider any two paths P(h1) and P(h2), for any stage
m < d-1. Since entries 0 through m of any row map to successive elements of the cyclic group of order d, at
least one of the values in columns 0 through m of row h1 (resp. h2) must not be in columns 0 through m of
row h2 (resp. h2). But this means that, through stage m, the set of coordinates of P(h1) that are unchanged
from their original values in u differ from the coordinates of P(h2) that are unchanged from their original
values in u. Thus, the only possible intersection of P(h1) and P(h2) is at stage d-1. But this is also impossi-

ble: the (h1 + d-1 modd-1)th coordinate in P(h1) increments, in a monotone fashion modulo d-1, toward
the coordinate value of v in that dimension, while the remaining paths have already attained the coordinate
value of v in that dimension. Therefore, any path so constructed is interior-disjoint with any other.

iii) Continuing the case for q = 0, construct an additional d paths by substituting a swingback at the 0th

stage of the preceding procedure. For stages 0 through d-1, that is, begin by tracing a path P ′(d-1+h) of
length max( |uh-vh|, j-|uh-vh| ) from u to (ud-1, … , vh±1 mod j, … , u0); if max(|uh-vh|, j-|uh-vh|) = j-|uh-vh|
then the zeroth stage path stops at vh +1 mod j; otherwise it stops at vh -1 mod j.

This construction results in a swingback path P(h) passing through a neighbor of v, with the hth coordinate
equal to vh±1. As illustrated by the bottom three rows of Table 16, the final step in the path traverses an
edge to v. Note that the total length of P(h) is i+j- 2|uh-vh| if min( |uh-vh|, j-|uh-vh|) = |uh-vh|; otherwise,
min(|uh-vh|, j-|uh-vh|) = j-|uh-vh| and the path length is i-j+ 2|uh-vh|. In any case, sorting the swingback

paths by their lengths yields a set of d-q = d-0 = d paths P(d) … P(2d-1), with P(d+r) traversing i+2cr
+- j

edges, and 0≤ r ≤ d-q-1 = d-1.

max uk vk– j uk vk––,( )
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By an argument similar to that pertaining to paths without swingback, any path with swingback intersects
no other path (with or without swingback), at least up to the next-to-last edge in the path. As remarked pre-
viously, the next-to-last edge advances to a unique neighbor of v (i.e., one which has not been traversed by
any other path, with or without swingback). For q = 0, that is, any two paths constructed in steps (i) or (iii)
are interior-disjoint.

Now suppose that the integer q is positive. With u as source and v as destination, inductively apply the pre-
ceding procedure for q = 0 to the d-q coordinates not shared by u and v. i) The Cj

d-1 prescribed by the q
coordinates whose values are the same in u and v contains 2(d-q) pairwise interior-disjoint u-v paths, d-q of
which traverse i edges.

ii) Construct 2q bypass paths as follows. If k is the index of a coordinate such that uk = vk, then traverse to

a neighbor of u by crossing one edge in the kth dimension; i.e., by incrementing or decrementing uk. From

this neighbor construct a path to the neighbor of v obtained by incrementing resp. decrementing the kth

coordinate of v. From u’s neighbor to v’s neighbor, a single path of length i is guaranteed by applying the
procedure for q = 0 to the d-q coordinates not shared by u and v. Traversing from v’s neighbor to v com-
pletes a path of length i+ 2. For each such k we obtain two paths (one by incrementing uk and the other by

decrementing uk), with the kth coordinate unique for every path so constructed. As a result, any bypass path
is interior-disjoint with any other bypass path, as well as with any of the 2(d-q) paths (with or without
swingback) whose vertex labels vary only in the coordinates not shared by u and v. The bypass procedure
constructs 2q paths P(d-q) … P(d+q-1) between u and v; each bypass path traverses i+2 edges.

iii) By induction, the Cj
d-1 prescribed by the q coordinates whose values are the same in u and v contains

d-q paths P(d+q) … P(2d-1), pairwise interior-disjoint among themselves as well as with those con-
structed in steps (i) and (ii). Path P(d+q+r) traverses i+2cr

+- j edges. The theorem holds for d > 1. ❒

Corollary 32.1. Cj
d is 2d-connected, and guarantees a quorum in the presence of any 2d-1 faults.

Let us use our results to formulate upper bounds on quorum diameter at i = 0, 1, … 2d-1 = f faults. Since
i = 0 is covered by Corollary 29.1, we focus on 1≤ i ≤ d-1. Although q may assume any value in the range
0 to d-1, the distances of Theorem 32 attain a maximum only if q = 0; i.e., for paths constructed according
to procedure (i). To see this, and without loss of generality, note that any two opposites attain the diameter
d⋅ j / 2  with i = 0. By contrast, the source and destination of a type (ii) bypass path must be identical in at
least one of the coordinates. Therefore, any path constructed according to procedure (ii) has length at most
(d-1)⋅ j / 2 + 2 ≤ d⋅ j / 2 , where the latter follows since j ≥ 5. For values 1≤ i ≤ d-1, where paths of type
(i) or type (ii) apply, it is the type (i) paths which realize the greatest number d⋅ j / 2  of edges.

For a number i of faults in the range d ≤ i ≤ 2d-1, consider the length of paths constructed by procedure
(iii), with q = 0. For 0≤ r ≤ d-q-1, define cr as the value j - cr

+; that is, cr is the (r+1)st greatest addend in

<u, v>, the distance (42). Sincec0
+ ≤ … ≤ cr

+ ≤ … ≤ cd-1
+, it follows that c0 ≥ … ≥ cr ≥ … ≥ cd-1 (64)

Writing <P> for the length of path P, express the length of the paths constructed by step (iii) as:

(65)

Consistent with (64), and by the remark preceding Corollary 29.1, the righthand side of (65) is at most

rc0 + ( j - cr) + (d - r - 1)cr+ 1 ≤ r  j / 2 + ( j - cr ) + (d - r - 1)cr+ 1 (66)

If r < d - 1 then the righthand side of (66) is bounded from above by

r  j / 2 + (d - r - 2)cr ≤ (d - 1) j /2 +  j /2 (67)

If r = d - 1 then the righthand side of (66) is at most(d - 1) j / 2 + j - cd-1 ≤ (d - 1) j / 2 + j - 1 (68)

<P d r+( )> ck
k 0=

r 1–

∑ j cr–( ) ck
k r 1+=

d 1–

∑+ +=
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To complete our analysis of these paths, note that the righthand side of (67) is achieved between any verti-
ces u and v, all d of whose coordinates differ by an absolute value of  j / 2  or j-  j / 2 ; for illustration:
u = 0, v = (  j / 2 , …,  j / 2). Further, the righthand side of (68) is achieved between any vertices u and v,
d-1 of whose coordinates differ by an absolute value of  j / 2  or j-  j / 2 , and one of whose coordinates dif-
fers by ±1; for illustration: u = 0, v = (  j / 2 , …,  j / 2 , 1). Furthermore, and by remarks following
Corollary 32.1, these pathlengths exceed those of paths constructed by procedure (ii). In summary:

Corollary 32.2. Let H be any quorum induced by deleting i vertices from Cj
d, 0 ≤ i ≤ f = 2d-1, j ≥ 5, d ≥ 2.

If i ≤ d-1 then the diameter of H is at most d⋅ j / 2 . If d ≤ i ≤ 2d-2 then the diameter of H is at most
(d - 1) j / 2 +  j / 2. If i = 2d - 1 then the diameter of H is at most d⋅ j / 2 +  j / 2 - 1. 

3.8  Choosing a Graph Architecture

Sections 3.1 through 3.7 provide a taxonomy that includes minimum size graph architectures whose quo-
rum radii are, a technical sense, optimum. In question is how to choose from among these architectures, so
as to minimize the maximum radius of any quorum. Refer to Table 18. At either end of the range of fault
tolerance our choice is both prescribed (stars, cycles, and cliques) and optimum. Between these extremes
we may choose from regular graphs Km⋅j

d whose parameters m, j, and d, are independent: d-dimensional
j-ary K-cubes (m = 1), K-cube-connected edges (m = 2), and K-cube-connected cycles (m ≥ 3).

For given fault tolerance f, what values of n = m⋅j d allow us to build a Km⋅j
d? At m = 1 we take all ordered

pairs (d, j) of positive integers such that d⋅(j-1) = f + 1. Each distinct (j, d) determines a K-cube Kj
d, with

n = j d and quorum radius at most d + 1. Similarly, for m = 2 we take all ordered pairs (j, d) such that
d⋅(j-1) = f. Each distinct (j, d) determines a K-cube-connected edge K2⋅j

d, with n = 2⋅j d and quorum radius
at most d + 2. For m ≥ 3 we take all ordered triples (m, j, d) such that d⋅(j-1) = f - 1. Each distinct (m, j, d)

determines a K-cube-connected cycle Km⋅j
d, with n = m⋅j d and quorum radius at most d + 1 + m/2 .

Since minimizing the dimension d is equivalent to maximizing the radix j, for fixed value of m we mini-
mize the quorum radius by letting j take on the greatest possible value. Figure 24 demonstrates how, for
fixed values of n and f, it is possible to have both a K-cube and a K-cube-connected cycle. Figure 25 shows
how we may also have both a K-cube-connected edge and a K-cube-connected cycle. Except for the trivial
case K2⋅2

0 = K2
1 (n = 2, f = 0), we know of no values of n and f for which a K-cube and a K-cube-con-

nected edge may exist simultaneously.

Number i of vertices 
deleted, 0 ≤≤≤≤ i ≤≤≤≤ f
f = 2⋅⋅⋅⋅[logj n] - 1

Radius Diameter

At least At most At least At most

0
 j /2⋅logj n

Corollary 29.1

from 1
to [logj n ] - 1

if j is odd
then ½⋅(j-1) ⋅logj n

else ½⋅j ⋅[logj n]-1
    Theorem 31

 j /2⋅logj n
Theorem 30, Corollary 32.2

from [logj n ]
to 2⋅[logj n ] -2

 j /2⋅([logj n]-1)+ j / 2
 Corollary 32.2  j /2⋅logj n

Theorem 30

 j /2⋅([logj n]-1)+ j / 2
 Corollary 32.2

2⋅[logj n ] -1
 j /2⋅(logj n)+ j / 2−1

Corollary 32.2
 j /2⋅(logj n)+ j / 2−1

 Corollary 32.2

Table 17: Properties of quorums induced by deleting vertices from C-cubes Cj
d, j ≥ 5, d ≥ 2.
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Figures 24 and 25 also illustrate how we have embodied, in executable form, the theorems and corollaries
of Sections 3.1 through 3.7. GRAFT (GRaph Architecture Fault Tolerance) calculates both graph architec-
tures and their salient properties. GRAFT is implemented as a Microsoft Excel workbook, and accompa-
nies this report as file GRAFT.xls. The main worksheet summarizes the quorum radius by taking the
maximum of our lower and upper bounds on ρ(n,i), as the number i of faults ranges between 0 and f.
Underlying the summary are detailed worksheets for stars, cycles, cliques, K-cubes, K-cube-connected
cycles, K-cube-connected edges, and C-cubes. As a function of the number of vertices deleted, the under-
lying worksheets give bounds on the radius of the quorum induced; by Theorem 2, these bounds apply as
well to the radius of a tree that spans the quorum. The underlying worksheets also detail lower and upper
bounds on the quorum diameter, as well as the minimum diameter of a tree spanning the quorum. Figures
26 and 27 illustrate detailed worksheets corresponding to the summary of Figure 25, at (n, f) = (54, 6).

GRAFT ameliorates the burden of remembering and applying the bulk of the more than 30 theorems and
corollaries contained in this report. The designer uses GRAFT by adjusting the values of n and f. As
Figure 26 shows, if no candidate architecture is feasible then GRAFT displays instructions summarizing
relations between n and f that achieve one of the candidate architectures. As a practical matter, the designer

Figure 24: GRAFT’s main worksheet summarizes properties of feasible graph architectures. 

Figure 25: GRAFT facilitates exploration of alternative fault tolerant graph architectures.

GRAFT: GRaph A rchitecture F ault T olerance
Calculator, Version 2.0. Computes n -node f -fault tolerant 
graph architectures having minimum number of point-to-

point connections, bounded radius ρρρρ  and diameter.

Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty 
Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the 
ASEE for research and educational purposes. Based on theory developed in 

my report: Fault Tolerant Physical Interconnection
of X2000 Computational Avionics.

n  = number of 
nodes

 f  = maximum 
number of 

partitioning faults

64 8

At most

Graph radius ρρρρ (n,f)  of quorum and of tree 
spanning the quorum

At least

Feasible graph architecture(s) with minimum number 
of point-to-point connections:

Average number of point-to-point 
connections per node (number of ports 

per node)
Input:

9.00

e  = minimum 
number of point-to-
point connections:

288

Recommended: 3 43-dimensional 4-ary K-cube

Feasible, but 
not 

recommended:
5 6

1-dimensional 8-ary
K-cube-connected cycle with 8 cycles, each 

containing 8 vertices

Recommended:

Feasible, but 
not 

recommended:

4

5

3-dimensional 3-ary K-cube-connected edge 5

6
1-dimensional 6-ary

K-cube-connected cycle with 6 cycles, each 
containing 9 vertices

GRAFT: GRaph A rchitecture F ault T olerance
Calculator, Version 2.0. Computes n -node f -fault tolerant 
graph architectures having minimum number of point-to-

point connections, bounded radius ρρρρ  and diameter.

Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty 
Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the 
ASEE for research and educational purposes. Based on theory developed in 

my report: Fault Tolerant Physical Interconnection
of X2000 Computational Avionics.

n  = number of 
nodes

 f  = maximum 
number of 

partitioning faults

54 6

At most

Graph radius ρρρρ (n,f)  of quorum and of tree 
spanning the quorum

At least

Feasible graph architecture(s) with minimum number 
of point-to-point connections:

Average number of point-to-point 
connections per node (number of ports 

per node)
Input:

7.00

e  = minimum 
number of point-to-
point connections:

189
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can often arrive at feasible values for n and f by simply trying different combinations. Section 3.9 illus-
trates this process by applying it to the proposed adjacency for X2000 core avionics.

We conclude this section by addressing the theoretical optimality of K-cubes, K-cube-connected edges,
K-cube-connected cycles, and C-cubes. In a ratioed asymptotic sense, the K-cube constructions can deliver
the best possible value Θ(log n) of ρ(n, f); i.e., a quorum radius that, within a constant factor (perhaps
equal to one) matches the lower bounds of Theorem 6. Moreover, K-cubes and their relatives are preferred
to C-cubes for two reasons: 1) the radius of a C-cube quorum exceeds the diameter of the comparable
K-cube having identical fault tolerance; 2) there is no relation between j and d such that, as nC = j d → ∞,
the ratio of the C-cube quorum radius to the general lower bound of Theorem 6, does not diverge; i.e., this
ratio must approach infinity. With respect to both criteria, that is, C-cubes are sub-optimal.

For real x, the sign of x is indicated by the function signum(x). If x > 0 then signum(x) = 1; if x < 0 then
signum(x) = -1; if x = 0 then signum(x) = 0. Refer to Table 18. The signum function allows us to conve-
niently encapsulate the fault tolerance of Km⋅j

d as

f = (j-1)⋅d + signum(m-2) (69)

Figure 26: Detailed worksheet corresponding to recommended architecture of Figure 25. 

Figure 27: Detailed worksheet corresponding to architecture of Figure 25. Feasible, but not recommended.

K-cube-connected 
edge?

TRUE At least At most At least At most At least At most

Structure: 0 3.00 4 4 4 4 7 8
1 3.00 4 4 4 4 7 8
2 3.00 4 4 4 4 7 8
3 3.00 4 4 4 4 7 8
4 2.00 4 5 4 5 7 10
5 2.00 4 5 4 5 7 10
6 2.00 4 5 4 5 7 10

Diameter of 
quorum, as a 
function of i

Minimum diameter 
of spanning tree, as 

a function of i

i  = number 
of 

partitioning 
faults <= f

Lower bound 
on radius 
ρρρρ (n,i) , in 
general 

independent of 
graph 

architecture

Radius of quorum 
and of tree 

spanning quorum, 
as a function of i

3-dimensional 3-ary K-
cube-connected edge

K-cube-connected 
Cycle?

TRUE At least At m ost At least At m ost At least At m ost

Structure: 0 3.00 5 5 5 5 9 10
1 3.00 5 5 5 4 9 10
2 3.00 5 6 5 6 9 12
3 3.00 5 6 5 6 9 12
4 2.00 5 6 5 6 9 12
5 2.00 5 6 5 6 9 12
6 2.00 5 6 5 9 9 12

1-dim ensional 6-ary
K-cube-connected 
cycle with 6 cycles, 
each containing 9 

vertices

Diam eter of 
quorum, as a 
function of i

Radius of quorum  
and of tree 

spanning quorum, 
as a function of i

i  = num ber 
of 

partitioning 
faults <= f

Lower bound 
on radius 
ρρρρ (n,i) , in 
general 

independent of 
graph 

architecture

Minimum 
diam eter of 

spanning tree, as 
a function of i
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Theorem 33. Denote by ρ−
Thm 6 the lower bound on the radius of any quorum, as given by Theorem 6. If

         ρ–
m, j, d= log j (n/m) + m/2      and      ρ+

m, j, d= 1 + log j (n/m) + m/2 (70)

are the minimum  resp. maximum radius of quorums of Km⋅j
d, as listed in Table 18, then

 (71)

Proof. Explicate ρ–
m, j, d, ρ+

m, j, d, and ρ−
Thm 6, the latter without the ceiling function. Making use of (69),

substitute j = 1 + [ f - signum(m-2)] /d. For the lower bound invoke the inequalities -1≤ signum(m-2),
n(f - 1)+3 ≤ nf, and ln[(f- 1)/(f + 2)] < 0. For the upper bound observe that signum(m-2) ≤ 1,
(j-1)d+2 ≤ jd, and -1.4 < ln[(f - 1)/(f + 2)] . The result follows by algebraic manipulation. ❒

It is interesting to note that, in the large, the fault tolerance (69) of Km⋅j
d is dominated by j and d, and grows

in a fashion that is independent of m. By contrast, the radius of Km⋅j
d is dominated by m and d, and is inde-

pendent of j. Our conclusions about the optimality of the quorum radius of Km⋅j
d depend on how m, j, and d

tend to infinity. If the left and right sides of (71) tend to some limit λ then, in the large, ρ–
m, j, d, ρ+

m, j, d,

and ρ−
Thm 6 are within a factor λ of ρ(m⋅j d, (j-1)⋅d + signum[m-2] ), the minimum value (over all graphs)

of the maximum quorum radius. Abbreviating the latter quantity as ρ m, j, d, we obtain the following result.

Corollary 33.1.  If, for all nK = m⋅j d ≥ k, q and r are least upper bounds

such that  and , then .

Under the conditions of Corollary 33.1, that is, the maximum quorum radius of Km⋅j
d approaches a value

that is within a factor 1+ q + qr + r  of the minimum. Several special cases of Corollary 33.1 are of partic-
ular interest: a)  d ∈ o(j); b)  m ∈ o(d); c) both (a) and (b). In this instance the maximum radius of quorums
induced from Km⋅j

d is asymptotically within a factor a)  1 +q, b) 1 + r , or c) 1 of ρ m, j, d.

Figure 28: GRAFT offers suggestions whenever it cannot construct a minimum size graph architecture.

n  =  n u m b e r  o f  
n o d e s

 f  =  m a x im u m  
n u m b e r  o f  

p a r t i t io n in g  f a u lts

5 4 7

F o r  a  s t a r :
F o r  a  c y c le :

F o r  a  c l iq u e :

F o r  a  K - c u b e :

F o r  a  K - c u b e -
c o n n e c t e d  

e d g e :
F o r  a  K - c u b e -

c o n n e c t e d  
c y c le :

F o r  a  C - c u b e :

n o t  fe a s ib le
n o t  fe a s ib le

n o t  fe a s ib le

n o t  fe a s ib le

n o t  fe a s ib le

n o t  fe a s ib le

n o t  fe a s ib le

m a k e  n  =  2 [ f /d + 1 ] ^ d ,  f o r  p o s i t iv e  in t e g e r  d  < =  f /2

w ith  g iv e n  n  a n d  f

w ith  g iv e n  n  a n d  f

A t  m o s t
w ith  g iv e n  n  a n d  fm a k e  f  =  0

G r a p h  r a d iu s  ρρρρ ( n , f )  o f  q u o r u m  a n d  o f  t r e e  
s p a n n in g  t h e  q u o r u m

A t le a s t

m a k e  n  =  f + 1  o r  n  =  f + 2

m a k e  f  =  1

m a k e  n  =  [ ( f - 1 ) /d - 1 ] ^ d ,  f o r  p o s i t iv e  in t e g e r  d

w ith  g iv e n  n  a n d  f

N o  f e a s ib le  a r c h i t e c t u r e  c o m p u t e d .

A v e r a g e  n u m b e r  o f  p o in t - to - p o in t  
c o n n e c t io n s  p e r  n o d e  ( n u m b e r  o f  p o r ts  

p e r  n o d e )

A d ju s t  n  o r  f .

In p u t :

e  =  m in im u m  
n u m b e r  o f  p o in t - to -
p o in t  c o n n e c t io n s :

w ith  g iv e n  n  a n d  f

m a k e  n  =  j ^ ( f + 1 ) /2 ,  f o r  in t e g e r s  j  > =  5  a n d  o d d  f  > = 3

w ith  g iv e n  n  a n d  f

w ith  g iv e n  n  a n d  f

m a k e  n  =  m [ ( f - 1 ) /d + 1 ] ^ d ,  f o r  i n t e g e r s  d  > =  1 ,  f  > =  3 ,  
a n d  m  > =  3 ,  o r  c h o o s e  f  =  2  a n d  a n y  in t e g e r  n  > =  5

G R A F T :  G R a p h  A r c h i t e c t u r e  F a u l t  T o le r a n c e
C a lc u la to r ,  V e rs io n  2 .0 .  C o m p u te s  n - n o d e  f - fa u l t  to le ra n t  

g r a p h  a rc h i te c tu re s  h a v in g  m in im u m  n u m b e r  o f  p o in t - to -
p o in t  c o n n e c t io n s ,  b o u n d e d  ra d iu s  ρρρρ  a n d  d ia m e te r .

C o p y r ig h t  1 9 9 9  b y  L a u re n c e  E .  L a F o rg e ,  N A S A /A S E E  S u m m e r  F a c u lt y  
F e l lo w .  1 0 -O c t -1 9 9 8 ,  1 8 - O c t - 1 9 9 9 . R e p r in t  r ig h ts  g ra n te d  to  N A S A  a n d  to  th e  
A S E E  fo r  re s e a r c h  a n d  e d u c a t io n a l p u r p o s e s .  B a s e d  o n  th e o ry  d e v e lo p e d  in  

m y  r e p o r t :  F a u l t  T o le r a n t  P h y s ic a l In te r c o n n e c t io n
o f  X 2 0 0 0  C o m p u ta t io n a l  A v io n ic s .
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2
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+
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2
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If both m and d are bounded then the only way for the number of vertices to approach infinity is for the
radix j to increase. In this case we can improve Corollary 33.1 to best possible.

Corollary 33.2. If d, m ∈ Θ(1) then  .

In the ratioed asymptotic sense of Corollaries 33.1 and 33.2, both the lower bounds of Theorem 6 and the
quorum radius of Km⋅j

d are best possible. In other cases it may be that one of these bounds is best possible,

but this remains to be proved. We also stress that ρ+
m, j, d / ρ−

Thm 6 and ρ−
m, j, d / ρ−

Thm 6 approach one
quite slowly. The reason for this appears to be the lnj factors in the expressions of (71). As computed by
GRAFT, for example, at (n, f) = (121, 19) and (n, f) = (512, 20) we have (m, j, d)= (1, 11, 2) and
(m, j, d)= (1, 8, 3); the corresponding ratios are 3/2 and 4/3.

Fault tolerance f Graph architectures

ΜΜΜΜaximum of quorum radii 
ρ(n, i), 0 ≤≤≤≤ i ≤≤≤≤ f

Maximum radius
of quorum divided 

by lower bound
ρρρρ−−−−

Thm 6

References

At least At most

0
* n,0 uniquely the set 
of n-vertex stars Sn

1 Exactly
best possible Table 7

1
* n,1 uniquely the set 
of n-vertex cycles Cn

n/2 Exactly
best possible

Table 7

2

*+
n,2 includes 

1-dimensional binary 
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Table 18: Radius of quorums induced by deleting vertices from n-vertex graph architectures.
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Before presenting the last two theorems of this section, let us review our terminology. Refer to the two
middle columns of Table 18, as well as to the introductory material on page 9. By the maximum radius
ρ(n, f) we mean the largest radius of any quorum induced by f or fewer faults. Thus, for example, to obtain
a lower bound on the maximum radius of a K-cube (resp. C-cube), we take the largest of the lower bounds
on radii as listed in Table 9 (resp. Table 17); for an upper bound on the maximum radius of a K-cube or
C-cube quorum, we take the largest of the upper bounds on radii as listed in Table 9 resp. Table 17. Simi-
larly, introduce the maximum diameter ∆(n, f) as the largest diameter of any quorum induced by f or fewer
faults. Thus, for example, to obtain a lower bound on the maximum diameter of a K-cube (resp. C-cube)
quorum, we take the largest of the lower bounds on diameter as listed in Table 9 (resp. Table 17); for an
upper bound on the maximum diameter of a K-cube or C-cube, we take the largest of the upper bounds on
diameter as listed in Table 9 resp. Table 17. Finally, note that if f is the worst-case fault tolerance of an
n-vertex graph architecture, then the fractional fault (worst-case) tolerance is simply f frac = f / n. With
these notions in hand, we can quantify relative merit of K-cubes and C-cubes.

Theorem 34. If the worst-case fault tolerance f of Kj
d equals that of CJ

D then, for j, J ≥ 5, d, D ≥ 2:

The maximum diameter ∆K of Kj
d is less than the maximum radius ρC  of CJ

D: ∆K < ρC (72)

The order nK(j,d) of Kj
d is less than the order nC(J,D) of CJ

D: nK < nC (73)

Proof. By hypothesis, and by Corollaries 9.1 and 32.1: f + 1 = d(j - 1)  = 2D (74)
By Table 9: ∆K ≤ d + 1 (75)

By Table 17, and by inequalities (74) and (75): ½⋅D(J - 1) = ¼⋅d(j - 1)(J - 1) ≤ ρC (76)

For (72) it therefore suffices to show d + 1 < ¼⋅d( j- 1)(J - 1) (77)
But (77) holds since j, J ≥ 5, d, D ≥ 2, and 1 + 1/d ≤ 2 < 4≤ j - 1 (78)

Now note that, for integers r > q ≥ 5, we have r / q < 6 / 5 < 1.7 < 2 < 5½. Hence 5½(q-1) /q < 5½(r-1) /r  and

the value of j / 5½(j-1) decreases strictly with increasing integer j ≥ 5. In particular, since 5 < 52 = 25, and

since J ≥ 5, d ≥ 2, we can make use of (74): nK = jd < 5½d(j-1) ≤ J ½d(j-1) = J D = nC (79)

Thus, (72) and (73) hold. ❒

Inequality (72) of Theorem 34 says that, for given fault tolerance, the maximum diameter of K-cube quo-
rums is less than than the maximum radius of C-cube quorums. Moreover, (73) establishes that the worst-
case fractional fault tolerance of K-cubes is superior to that of C-cubes. Recalling the discussion at the
beginning of Section 3.7, Theorem 34 focuses on radices greater than 4 and dimensions greater than 1
since, for j ≤ 4 or d = 1, C-cubes are isomorphic to K-cubes or cycles. But in how many cases can the fault
tolerance of a C-cube equal that of a K-cube? That is, for what constructions is the degree of each vertex in
a K-cube equal to that f+1 of any vertex in a C-cube? By inspection of (74), such a construction is realized
if and only the degree of every vertex of the K-cube is an even integer no less than eight. In other words,
for j > 4 and d > 1, Theorem 34 applies to all C-cubes; moreover, Theorem 34 applies to a subset of K-
cubes (loosely speaking, "half" of them) that map many-to-one onto the set of C-cubes.

Despite Theorem 34’s quantitative preference for K-cubes over C-cubes, it seems plausible that, when
divided by ρ−

Thm 6, the maximum radius of C-cube quorums attains a limit, akin to that expressed by Cor-
ollaries 33.1 and 33.2. That is, we still do not know whether, for some scaling of j and d, the maximum
radius of quorums induced from Cj

d is asymptotically within a constant factor of ρ−
Thm 6. Alas, such scal-

ability is impossible, as the next theorem shows.

Theorem 35. As nC(j,d) = j d tends to infinity, the ratio ρC(j d, 2d-1) /ρ−
Thm 6  grows without bound.

Proof. Suppose to the contrary that ρC /ρ−
Thm 6∈ Θ(1). Then for some j, d, and k corresponding to all 
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nC (j,d) ≥ k, the ratio is bounded from above by a least constant b ≥ 1. As with Theorem 33, we employ 

simplifying substitutions to consider  (80)

for such sufficiently large nC (j,d) ≥ k. The scaling condition n → ∞ implies that (j-1)⋅ln d → ∞ . Hence,
for the upper bound b to exist, the denominator on the lefthand side of (80) must approach infinity:
ln j → ∞. But this means that j → ∞. As j → ∞ , (j-1)/ ln j grows without bound; hence there can be no k

such that, for all nC (j,d) ≥ k, (80) is satisfied. That is, ρC(j d, 2d) /ρ−
Thm 6 grows without bound. ❒

Theorem 35 says that the bound of Theorem 6 (a relative of the Moore bound mentioned on page 15) can-
not be achieved by C-cubes, even in the sense of asymptotic ratios. This is not the same as a wholesale
assertion about the ratio of C-cube quorum radii to the optimum value of the maximum radius ρ(n, f), and
we are not in a position to advance such a claim. However, for scaling trends that enable K-cubes to come
within a constant factor of ρ(n, f), we can be certain that the ratio ρC /ρ(nC, f) diverges. More precisely:

Corollary 35.1. For (j-1)d even, let j and d be the radix and dimension of the class of Kj
d such that

d ∈ Θ(1)  or, with r the least upper bound such that, for all nC = j d ≥ k,  ln d ≤ r ln j. Let {CJ
½(j-1)d = D}

be the class of C-cubes corresponding to such Kj
d ’s, as prescribed by the discussion following

Theorem 34. If nK (j,d) = j d tends to infinity then, by equation (73) of Theorem 34, nC tends to infinity;

moreover, by Theorem 35, the ratio ρC /ρ(nC, f) grows without bound.

3.9  Underware for Distributed Configuration

When combined with breadth-first search, the proof of Theorem 2 provides a Θ(n+e) algorithm for con-
structing a tree from a graph of order n and size e ([Chartrand and Lesniak 1986]). In particular, if u is a
central vertex of a quorum H induced by deleting up to f vertices of G, then applying this algorithm to a
central vertex of H gives a spanning tree T whose distances are the same as for H. In particular, the radius
of T equals the radius of H. To find the central vertices of H, it suffices to compute the (symmetric) all-dis-
tances matrix (use breadth-first search from every vertex in H, running time O(n(n+e)), [Cormen, Leiser-
son, Rivest 1993], Sec. 23.2). Column j of row i in the all-distances matrix gives the distance between
vertex i and vertex j. Sort the columns of each row in, say, descending order of the value of the entries
(using COUNTING-SORT this can be done in time Θ(n) per row, Θ(n)2 overall, [Cormen, Leiserson,
Rivest 1993], Sec. 9.2). As a result, the eccentricity of vertex i is now in column 1 of row i. In time Θ(n),
find the radius of the graph by extracting the minimum value in column 1.21 Rescan each row of column 1;
if the distance in (i,1) equals the radius then insert i in the list of central vertices. To recap: 

Theorem 36. For any graph of order n and size e, we can use breadth-first search to compute, on a Turing
machine equivalent and in time O(n(n+e)), a spanning tree having minimum radius.

The root of the tree T computed by Theorem 36 is a central vertex of both T and the quorum H that T spans.
Were we to have a known fault-free node that could control configuration (via, say, an I2C bus) then we
could make use of Theorem 36 to compute the root (and consequently, the rest of) a 1394 bus with mini-
mum radius. Unfortunately, this question begs the question of worst-case fault tolerance. In consequence,
we need to provide for distributed diagnosis and configuration. The attendant algorithms and implementa-
tions are underware: that is, they underlie and enable successful configuration of a 1394 bus.

21. For an alternative wasy of computing the radius, (absent proofs of correctness or running time), see Algorithm
12.4 of [Chacra et al 1979].

j 1–( ) ln d
ln j

------------------------- 2

j
2
--- d ln d

d ln j
---------------------------≤

2ρC
–

ρ Thm 6
–

--------------- 2b≤=
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Under the hypothesis that the number of faults is no greater that the worst-case maximum f, how can we
design individual nodes to cooperatively perform diagnosis and configuration? To solve this problem we
propose a separate algorithm for each graph architecture. For a star the value of f equals 0, so by assump-
tion the star configures properly as long as it meets other 1394 requirements. To shorten this exposition we
give details only in the case of cycles and one-dimensional binary K-cube-connected cycles.

For cycles, Figures 29 and 30 illustrate the action and timing of configuration algorithm Acycle in instances
with and without faults. The key idea is to partition Cn into overlapping paths P0, n /2  and Pn /2 , 0, with
the former spanning n /2 + 1 successive vertices u0, u1, …, u n /2 , and the latter traversing n /2 + 1
vertices u n /2 , un /2 + 1, …, u0. Let us explain Acycle as we establish its correctness and efficiency. An
initial bus reset is either a power-up bus reset, or a node insertion or deletion reset, or a software initiated
bus reset which is preceding by filling the port disable bits of each node with their default values (period
(T-1, T0) of Figure 30, [Anderson 1998] pp. 244-247, Chap. 14; [P1394 1995] Table 4-28). For Acycle the
default values of the port disable bits are set at lines 1 and 2, either in ROM for power-up, or by software
after power-up but prior to line 3. At line 3, and as depicted by the red and blue solid lines of Figure
29A(i), nodes simultaneously configure one or two (disjoint) bus(es) from P0, n /2 . If there is no bus fault
in P0, n /2 then by the end of line 11 the path configures as a tree (period (T0, T3) of Figure 30).

Recalling the discussion at the beginning of Section 3, the nodes of P0, n /2  perform mutual test in order
to diagnose more completely the health of each node. As implied by line 5 of Acycle, this diagnosis
involves all layers of protocols, including application-level exchange via tasks running on each processor.
Such high-level diagnosis is in keeping with the spirit of Bob Rasmussen’s approach of software lock and
key, though in our case the I2C bus need not be involved. An advantage of high-level diagnosis is that
much more than just the physical layer of the 1394 is exercised, and the probability of fault detection is
increased. A disadvantage is that it may be difficult or impossible for software to distinguish various types
of low-level faults, and the probability of fine-grained fault isolation is decreased. However, and as Savio
Chau has pointed out, it would be both expensive and risky to modify the VERILOG or VHDL sources for
1394 bus controllers. Our recommendations are consistent with Savio’s goal of avoiding this exposure.

Figure 29: Distributed configuration by Acycle from a cycle: A. with no faults, B. with one fault.
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Distributed Diagnosis and Configuration Algorithm Acycle % Configure a tree from a cycle

1) Enable all ports % Initial port disable values in ROM
2) except those between (un-1, u0), (u n /2, u [n /2 + 1] mod n )
3) Initial bus reset % Bus reset (not command reset)
4) For each of ui’s enabled ports in P0, n /2 % Have at most one fault;
5) If test (ui , u [i-1] mod n ) fails %  hence at most 2 buses are formed
6) then ui marks u [i-1] mod n, disables its port to u [i-1] mod n % Record results of failed test
7) ui issues a bus reset %  and disable immediately
8) If test (ui , u [i+ 1] mod n) fails % Performing a bus reset
9) then ui marks u [i+ 1] mod n, disables its port to u [i+ 1] mod n%  guarantees two leaves
10) ui issues a bus reset
11) Propagate the marked status of each node throughout bus % Get info to least one of u0,  u n /2
12) u0 disables its port to u1; u1 disables its port to u0 %  Switch to complementary bus
13) u n / 2 disables its port to u [n /2 - 1] mod n; u [n /2 - 1] mod n  disables its port to u n /2
14) u0 enables its port to un-1; un-1 enables its port to u0
15) u n /2  enables its port to u [n /2 + 1] mod n; u [n /2 + 1] mod n  enables its port to u n /2
16) u0 and u n /2 issue bus reset % Node insertion/ deletion
17) For each of ui’s enabled ports in Pn /2, 0  % Have at most one fault;
18) If test (ui , u [i-1] mod n ) fails %  hence at most 2 buses are formed
19) then ui marks u [i-1] mod n, disables its port to u [i-1] mod n % Record results of failed test
20) ui issues a bus reset %  and disable immediately
21) If test (ui , u [i+ 1] mod n) fails % Performing a bus reset
22) then ui marks u [i+ 1] mod n , disables its port to u [i+ 1] mod n%  guarantees two leaves
23) ui issues a bus reset
24) Propagate the marked status of each node throughout bus % Get info to least one of u0, u n /2
25) If u1 is not marked by u0
26) thenu0 enables its port to u1
27) If u [n /2 - 1] mod n is not marked by u n /2 % Have at most one fault;
28)   and some other node is marked %  hence u0,  u n /2, if not faulty,
29) thenu n /2 enables its port to u [n /2 - 1] mod n %  has status of marked nodes
30) If u0 is not marked by u1
31) thenu1 enables its port to u0
32) If u n /2 is not marked by u [n /2 - 1] mod n
33)   and some other node is marked
34) thenu [n /2 - 1] mod n enables its port to u n /2
35) u0 and u n /2 issue bus reset % Final configuration

Figure 30: Parallel-series event timeline for distributed diagnosis and configuration algorithm Acycle. 
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By contrast to configuration, results for diagnosis are sufficiently well-established to merit direct applica-
tion to X2000. As Figures 31 and 32 suggest, the theoretical basis for mutual test is well-founded [LaForge
et al 1994], [LaForge and Korver 1997]. In addition, practical experiments with similar approaches sug-
gest that the coverage of high-level diagnosis is very close to 100% [Bianchini and Buskens 1992]. In
keeping with this, we assume that tests applied by good nodes are accurate.

Refer to Figure 29B(i). If the directed point-to-point test (ui , ui-1) fails then (lines 5 and 6) ui disables its
port to ui-1 (period (T1, T2) of Figure 30). This includes, but is not limited to, the case where ui sees no
response from ui-1 prior to arbitration timeout or where ui sees erroneous output (such as babbling noise)
from ui-1. In such an instance ui becomes a leaf and (line 7) resignals bus reset. The bus returns to the state
at line 4. By hypothesis, at most one node is faulty. If ui-1 is good then ui is faulty and we do not want
(ui , ui-1) to be included in the final configuration. If ui-1 is faulty then ui is good and we still do not want
(ui , ui-1) to be included in the final configuration. Hence, the correct action is for ui to disable its port to
ui-1 and broadcast this action (lines 6 and 11). A similar argument establishes the correctness of the action
(lines 8 through 11) in response to the failure of the directed point-to-point test (ui , ui+ 1) . Under a fault
model that, strictly speaking, is outside the one we have adopted, it is possible for one of ui’s neighbors,
say ui-1, to disable its connection with ui, while the other neighbor ui+ 1 maintains an enabled connection to
ui . This is a result of mutual tests that point to a healthy connection between ui and ui+ 1, but an unhealthy
connection between ui-1 and ui. In this case the only logical possibility is that ui is good except for its abil-
ity to communicate with ui-1. Again, the correct action is for ui to disable its port to ui-1.

If one of the nodes u1, …, u n /2 - 1 is marked faulty then lines 5 through 10 give rise to two buses from
u0, u1, …, u n /2. If either u0 or u n /2 is marked as faulty then there is only one bus formed. In either
case, at the end of line 11 the status of the all the nodes of u0, u1, …, u n /2  is known by the fault-free
nodes (v, w) with lowest resp. highest index between 0 and n /2. Either u0 is good and v = u0 or u0 is

Figure 31: The shaded area represents feasible specifications for mutual test and diagnosis and is the 
intersection the feasible region for 0% of faulty called good (solid lines) with the feasible region for at most 
2% of good called faulty (dotted lines). Data obtained using DWI simulator. [LaForge and Korver 1997].

Figure 32: Mutual test and diagnosis with 75% of all nodes faulty; h measures the test redundancy.
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faulty and v = u1. Either u n /2 is good and w = u n /2 or u n /2 is faulty and v = u n /2 - 1. Since at most
one node is faulty, however, at least one of the overlapping nodes u0 or u n /2  will be included in (v, w)
(and if only one then the other overlapping node is faulty). Nodes u0, u n /2  and their neighbors rewrite
their port registers to (lines 12 through 15) enable configuration (line 16) of Pn /2,0  on the next bus reset
(period (T3, T4) of Figure 30). To allow for the possibility of a single fault, this reset is initiated by both u0
and u n /2 (line 16, period (T4, T5) of Figure 30). As shown in Figure 29A(ii) and 29B(ii), the mutual test,
diagnosis, and configuration of Pn /2, 0 (lines 17 though 24) proceeds as for P0, n /2 .

The hypothesis of at most one faulty node assures that at least one of P0, n /2 or Pn /2,0 (both, if there
are no faults) forms a single bus. If there are no faults then (lines 25 through 35) nodes form a tree rooted at
u0, with leaves u n /2 and u n /2 + 1 (Figure 29A(iii), period (T7, T9) of Figure 30). If there is a "one-
sided" fault (only one of a node’s neighbors declares it faulty) then we form a tree whose leaves are the
faulty node and the neighbor declaring it faulty. Otherwise, two neighbors of some node agree that the
node is faulty, and these neighbors become leaves of the 1394 bus. In summary:

Theorem 37. In the presence of any one faulty node, and in at most four bus reset periods (three resets
altogether), Acycle configures a tree of diameter at most n-1 from an n-vertex cycle (the only
1-tolerant architecture with minimum count n of point-to-point connections). 

Let us mention a few points concerning the implementation of Acycle. The 1394 specification prescribes
that 1394 topology maps are not preserved across bus resets, and so this information cannot be used
([Anderson 1998] p. 254). For this reason the results of mutual test are recorded in the memory of each
node, and survive subsequent software-initiated bus resets (note that software bus resets do not require
rebooting of the operating system on each node). Except where power is lost, however, port disable bits are
preserved across resets ([Anderson 1998] p. 261). Implementing Acycle (or its analog for cliques, K-cubes,
or K-cube-connected edges or cycles) will require a careful estimate of each Ti in Figure 30. For example,
consider the beginning of (T4, T5). The 167µs minimum reset duration, if adhered to, represents an upper
bound on the windows of tolerance (which must account for setup and hold on drivers and receivers) as u0
and u n /2 switch from one sub-bus to another ([Anderson 1998] p. 262).

The preceding explanation and proof applies to diagnosis and configuration of an architecture based on Cn,
where diagnosis is carried out after a bus reset. What about the case of faults which appear after bus reset,
and in the course of nominal bus operation? Under the assumption of no "one-sided faults", detection and
configuration in the presence of a single fault u can be readily carried out by periodically performing the
same point-to-point tests used in Acycle. If u is a leaf in the current tree then the parent of u disconnects
itself from u, signals a bus reset, and Acycle configures the truncated tree beginning at line 4. If u is an inte-
rior node in the current tree then the neighbors of u command the two leaves to enable their ports to each
other, and then issue bus resets. Acycle configures the truncated tree beginning at line 4. Similarly, the case
of "one-sided" faults can be handled by adding tests destined two links from the testing node. Note that iso-
lation of a faulty node does not depend on obtaining its cooperation, an advantage over the proposed

"back-door" scheme using the I2C bus.

Let us now consider diagnosis and configuration for K2
1(n), the architecture perhaps most pertinent to

X2000. As in the case of cycles, if we have a fault-free, global means of diagnosis and configuration then
we can achieve the bounds of Table 18 using Theorem 36. We can also achieve these bounds in a distrib-
uted, parallel fashion.  For positive integer q, algorithm A2

1(4q) configures a quorum in the case
n = 2m = 2·2·q≥ 12; the remaining two cases (n = 2m+1 or n = 2m, m odd) are similar. For the sake of
brevity we omit psuedocode for A2

1(4q).

Refer to Figure 34. The key idea is to consider mated pairs of nodes (u, v), one from each of the two cycles
comprising K2

1(4q); the low order digit on the label of u equals the low order digit on the label of v, and so
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(u, v) is an edge in K2
1(4q). A mated pair is available if at least one of its nodes is good; otherwise it is

unavailable. Under the hypothesis that any instance of K2
1(4q) contains at most two faults, at most one

mated pair is unavailable. An instance of K2
1(4q) maps to an instance of C2q as follows. Each available

mated pair in K2
1(4q) corresponds to a good node in C2q; an unavailable mated pair in K2

1(4q) (there is at

most one) corresponds to a fault in C2q. The problem of configuring an instance of K2
1(4q) reduces to that

of configuring an instance of C2q, as long as adjacent available mated pairs can be connected. This is illus-
trated by comparing Figure 29 with steps e through g of Figures 33 through 36.

To assure that adjacent available mated pairs can be interconnected, we schedule four preliminary steps.
Refer to steps a through d of Figures 33 through 37. At each step, K2

1(4q) is partitioned into q disjoint
paths; the nominal length of each path (in the absence of faults) equals 4. Similar to the use of paths in
algorithm Acycle, each path scheduled by A2

1(4q) forms a disjoint 1394 bus or, in the presence of faults, at
most two disjoint buses. Also as in Acycle, nodes perform point-to-point tests on their neighbors. In the
event of an arbitration timeout induced by an unresponsive neighbor, a node disables the port to that neigh-
bor and signals a bus reset on the bus formed so far. Thus, each of steps a through d of Figures 33
through 37 may take two bus resets to stabilize. This is a consequence of the 1394 specifications with
respect to PARENT_NOTIFY and CHILD_NOTIFY (Chapters 13, 14, 15, [Anderson 1998]).

At the end of step d, each good node contains the status of its mate, as well at the status of the nodes con-
tained in its neighboring mated pairs. If both nodes in a mated pair (u, v) are good then, in steps e, f, and g,
the respective nodes enable the connection (u, v). Also in steps e, f, and g, either u or v enables the connec-
tion to a node w in its neighboring mated pair, if and only if i)w is good; ii) the label on w is greater than
that of any other good node (there is at most one other) in the mated pair to which w belongs; iii)Acycle
would schedule the corresponding nodes in C2q to be connected. Suppose that only one node, say x, in a
mated pair is good. Node x enables its connections to a node y in a neighboring mated pair if and only if
i) y is good; ii)Acycle would schedule the corresponding nodes in C2q to be connected.

Figure 33: Distributed configuration of a minimum radius tree via A2
1(16) . Compare with Figure 29A.
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Under the preceding conditions, verify by enumeration that adjacent available mated pairs can be intercon-
nected, unless we have the (local) fault pattern illustrated by Figure 37. As illustrated by Figures33
through 36, the former cases are handled by Acycle, as previously proved. The pattern depicted in Figure 37
amounts to adjacent faults in C2q; although not proved previously, Acycle successfully configures this
instance as well.  Note that in steps e and f we need not perform any point-to-point tests, but instead exe-
cute just those portions of Acycle which propagate node status to the "overlapping" mated pairs. Observe
also that, by ensuring that any fault occurs in a mated pair corresponding to a leaf in C2q, any path between
two good nodes in the configured tree traverses at most two times between the basic cycles. Therefore:

Figure 34: Action of distributed configuration algorithm A2
1(16) in the presence of a single fault.

Figure 35: Action of A2
1(16) in the presence of two faults occuring in the same pair of mated nodes.
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Theorem 38. In the presence of any two faulty nodes, and in at most 11 bus reset periods, A2
1(4q) config-

ures from K2
1(4q) a tree of diameter at most 2q+1 = n/2 + 1.

3.10  Application to X2000

We conclude our technical development by illustrating how our results for architectures and algorithms
apply in the case of sparse tolerance (f ≤ 3) to node failures. If we take f = 1 then by Table 7 the unique
minimum size architecture is a Cn. By Table 7, the maximum diameter of a tree spanning a quorum of Cn
equals n-1. Since the maximum diameter of a 1394 bus is 16, the maximum number of nodes in single
fault-tolerant architecture with fewest point-to-point interconnects equals 17. As illustrated in Figure 38,
we could as well come to this conclusion by using GRAFT, whose logic incorporates Table 7. We obtain a

Figure 36: Action of A2
1(16) in the presence of two faults occuring in separated pairs of mated nodes.

Figure 37: Action of A2
1(16) in the presence of two faults occuring in neighboring pairs of mated nodes.
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conservative estimate on the diameter of the spanning tree by doubling the upper bound on quorum radius.
Alternatively, we can examine the detailed worksheet, in this case the sheet entitled "Cycle". For n > 17 we
must either resort to architectures that are not of minimum size, or we must increase the fault tolerance.
While the former is beyond the scope of this report, the latter may be reasonable, especially considering
space shuttle requirements for tolerance to two faults.

Refer to Figure 39. For f = 2 GRAFT is able to construct a K2
1(n) for all n > 2, and furthermore tells us

that the diameter remains within our limit of 16 as long as n ≤ 30. GRAFT’s upper bound on a maximum
diameter equals 16 for n = 30, 29, 28, and 27, but decreases to 14 at n = 26. Refer to Figure 40. For f = 3
the upper bound 16 on diameter, as computed by GRAFT, attains the limits imposed by the 1394 bus at
n = 44, 40, 39, and 36. Within the range 3< n ≤ 44, GRAFT is able to find only Km⋅j

d(n)’s whose dimen-

sion d equals 1 or 2, and whose radix j equals 2 or 3. As mentioned in Section 3.8, the radius of Km⋅j
d(n)

may not be a monotone function of n. This is born out at n = 42, wherein GRAFT identifies a K14⋅3
1 whose

quorum diameter may be as much as 18.

Figure 41 illustrates the proposed architecture of [Charlan et al 11-Jun-1998]. According to the diagram,
the degree of each node is either 4 or 2. By the discussion at the top of page 9, this renders the architecture
tolerant to at most one fault, and furthermore leaves either 2 or 4 ports per node unused. In a 2-Sep-1998
conversation, Carl Steiner and Don Hunter explained that the intention is to maximize the number of con-
nected ports. With this clarification, the architecture of Figure 41 can be redrawn as the multigraph of Fig-
ure 42A. Let us analyze this multigraph architecture. First note that having two sets of wires ("for
redundancy") between pairs of nodes does not increase the tolerance to nodes whose failure acts to parti-
tion the bus. Evidently, the duplicate sets of wires account for the possibility of faulty ports on nodes which
otherwise function properly. However, this reasoning is contrary to our understanding of the X2000 fault
model, whereby each node is itself a fault containment region. We have been unable to identify any docu-
ment that points to a bus controller, or a portion of a bus controller, as a fault containment region

Further, Carl Steiner and Don Hunter accord negligible probability to the event of a break in the wires
between ports. In the interest of conserving both circuit area and y-axis connector pins, I recommend dis-
pensing with the duplicate 1394 bus. Moreover, by pre-designating two roots, the architectures of
Figures 41 and 42A unnecessarily reduce from 2 to 1 the tolerance to partitioning faults (i.e., if each of the
designated roots is faulty then we cannot form a tree that spans the quorum). I recommend not pre-desig-
nating any pair of nodes as candidates for the root of the tree to be configured. If this tact is taken, then the
number of such pre-designated roots should be no less than one plus the number of faults tolerated.

Figure 38: GRAFT computes the maximum number 17 of nodes in a minimum size single fault tolerant 
architecture whose quorums are all spanned by a tree having diameter within the 1394 bus’s limit of 16.

GRAFT: GRaph A rchitecture F ault T olerance
Calculator, Version 2.0. Computes n -node f -fault tolerant 
graph architectures having minimum number of point-to-

point connections, bounded radius ρρρρ  and diameter.

Copyright 1999 by Laurence E. LaForge, NASA/ASEE Summer Faculty 
Fellow. 10-Oct-1998, 18-Oct-1999. Reprint rights granted to NASA and to the 
ASEE for research and educational purposes. Based on theory developed in 

my report: Fault Tolerant Physical Interconnection
of X2000 Computational Avionics.
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Figure 39: GRAFT computes a maximal number 30 of nodes in a minimum size 2-fault tolerant graph 
architecture whose quorums are all spanned by a tree having diameter within the 1394 bus’s limit of 16.
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Figure 40: GRAFT computes a maximal number 44 of nodes in a minimum size 3-fault tolerant graph 
architecture whose quorums are all spanned by a tree having diameter within the 1394 bus’s limit of 16.
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Figure 41: 1394 bus architecture proposed for X2000 ([Steiner 11-Mar-1997]).
Not shown is the "back-door" I2C bus ([Charlan et al 11-Jun-1998], Option D).
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Prior to this report, the most recent recommendation for X2000 bus fault tolerance was Option D of [Char-
lan et al 11-Jun-1998]. Option D combines a "back-door" I2C bus with the architecture of either Figure 41
or 42A. However, and as pointed out in Section 2, it takes only one faulty node to defeat the multidrop I2C.
Suppose that this faulty node happens to be one of the pre-designated roots of Figures 41 and 42A, and that
a second pre-designated root fails. In such a case we cannot form a tree that spans the quorum. Therefore,
even with a "back-door" I2C bus, the worst-case fault tolerance of Option D is at most one. At a cost of six
1394 ports (36 wires) and one I2C connection (two wires) per node, we are substantially overpaying for
single fault tolerance. The architecture that I recommend is a refinement of Option C as described in [Char-
lan et al 11-Jun-1998]. Assuming that the avionics package is populated by at least 18 but no more than 44
nodes, an economical solution is the K2

1(n) depicted by Figure 42B. In this case we halve the number of
1394 ports and eliminate the I2C bus. Doing this recovers 20 input/output pins per node, and at the same
time increases the fault tolerance from 1 to 2. Alternatively, we can keep six ports per node, eliminating
only the I2C. In this case, and as computed by GRAFT, we can tolerate five faults in as many as 96 nodes,
all the while staying within the 16 hop limit imposed by the 1394 bus.

Certainly, we have not considered every detail of X2000 avionics. As with any model, the applicability of
our results is properly tested as details are factored in. For example, let us review the extent to which our
analysis is consistent with considerations of power ([Anderson 1998], chapter 20) and flight computers.

Power is sourced to the bus through switch slices. In the worst case, the number of dead switch slices that
can be tolerated is no greater than the number of switch slices minus the minimum number of switch slices
that can support the bus. Similarly, the number of faults tolerated is no greater than the number of flight
computers minus the minimum number of flight computers necessary to complete the mission (for first
delivery, one working flight computer). For example, if the bus can complete its mission with a single
flight computer and a single switch slice then building three flight computers and three switch slices, as
part of a K2

1(n), maintains 2 fault tolerance. Dropping to (say) two switch slices or two flight computers
reduces the tolerance to 1, even though there exists a quorum in the presence of any two faulty nodes.

The caveats, of course, are that the margins at the switch slices, combined with capacitive buffering at each
node, are sufficient to accommodate the RLC transient associated with a bus power disconnect. To guard
against over and under voltage, each node's PHY layer should tie together, with breakers, all power inputs.
The basis for recovering from overvoltage was suggested in [Charlan et al 11-Jun-1998]. With these cave-
ats, maintaining connectivity among all the working nodes (including at least one working switch slice)
suffices to maintain a working PHY layer in each of the good nodes.

In this section we have reinforced the use of GRAFT for deciding on an architecture, and applied GRAFT
to sparse fault tolerance for X2000. Having settled on an architecture, it remains to develop an algorithm
for distributed diagnosis and configuration. Section 3.9 spells out algorithms for the cases f = 1 and f = 2.
We leave as future work the extension of these algorithms to cliques, K-cubes, and K-cube-connected
edges and cycles. At the outset, I estimate that development of a repertoire of such algorithms would take
160 hours.

Figure 42: Refinements of architecture of Figure 41.
A. As explained by Carl Steiner and Don Hunter. B. K2

1(n) as recommended by this report.
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